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Figure 1: Example images taken by blind and low-vision (BLV) people featuring common household products. While all of the
products in these images are visually recognizable by sighted people, common image quality issues, such as blur, framing, and
rotation, make them difficult for vision-language models (VLMs) to recognize. None of the VLMs tested in this study (GPT-4.1,
Gemini 2.5 Flash, Llama 3.2 90B, and Molmo 72B) fully and accurately recognized the products in these images.

Abstract
Vision-Language Models (VLMs) are increasingly used by blind and
low-vision (BLV) people to identify and understand products in
their everyday lives, such as food, personal care items, and house-
hold goods. Despite their prevalence, we lack an empirical un-
derstanding of how common image quality issues—such as blur,
misframing, and rotation—affect the accuracy of VLM-generated
captions and whether the resulting captions meet BLV people’s
information needs. Based on a survey of 86 BLV participants, we
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develop an annotated dataset of 1,859 product images from BLV
people to systematically evaluate how image quality issues affect
VLM-generated captions. While the best VLM achieves 98% accu-
racy on images with no quality issues, accuracy drops to 75% overall
when quality issues are present, worsening considerably as issues
compound. We discuss the need for model evaluations that center
on disabled people’s experiences throughout the process and offer
concrete recommendations for HCI and ML researchers to make
VLMs more reliable for BLV people.
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1 Introduction
Blind and low-vision (BLV) people regularly use automated (e.g.,
Microsoft Seeing AI, Be My AI, TapTapSee) and human-powered
(e.g., Aira, Be My Eyes) tools to understand visual information [9,
77, 120, 132]. While Vision-Language Model (VLM)-based1 image
captioning research has focused on many types of content (e.g.,
social media photos, scenes, objects) [24, 50, 90, 96], one widely-
studied use case is to support BLV people in identifying products,
such as packaged foods and household goods. As such, AI tools
and their underlying VLMs are becoming more integral to how
BLV people perform a variety of everyday tasks, including grocery
shopping, cooking, cleaning, and personal care [9, 120, 132]. Yet, we
know little about the real-world experiences of BLV people using
these tools for product identification or how well VLMs accurately
identify products in naturalistic images, where objects of interest
may be blurry, out of frame, or rotated.

Despite enthusiasm for VLM-based captioning tools in identify-
ing and understanding products, three challenges complicate their
real-world use and evaluation. First, extensive prior work has stud-
ied and introduced VLM-based captioning tools to help BLV people
understand objects and products in their environment [9, 120, 132].
However, we know less about the factors (e.g., privacy, accuracy,
safety) that shape their decision to turn to automated systems rather
than humans, and about their experience with captioning errors
using existing tools (e.g., Be My AI, Seeing AI). Second, VLM-based
image captioning tools perform best when BLV users take and
upload high-quality photos, a known challenge for BLV people
[30, 33, 55]. Prior work identifies various image quality issues (e.g.,
blur, rotation, framing, lighting) [33, 55], automatically detects such
distortions [30], and introduces techniques to help BLV people take
better photos [6, 60, 64, 74, 97, 111, 124, 127]. However, limited prior
work has examined how BLV people assess image quality issues
with existing VLM tools and perceive their impact on captions [61].
Third, interview studies with BLV people indicate that pervasive
image quality issues affect whether images are captioned accurately
[9, 152]; however, the relationship between image quality factors
and the accuracy of resulting product captions has yet to be system-
atically analyzed. Prior datasets examine the prevalence of image
quality issues, but evaluation of these issues remains coarse (e.g.,
determining whether an image is captionable or not) [30, 33, 55].
Moreover, existing evaluation approaches for image captions focus
on how well a generated caption aligns with a reference text. This
1We use “VLMs” to refer to tools like ChatGPT or Gemini that integrate vision-language
models and are colloquially known as “AI”. We use “AI” in the survey study (Section 3)
since participants may be unfamiliar with “VLMs” versus “AI”.

can result in false positives, where a caption appears reasonable
even when it contains serious errors or omits critical information.
Understanding how pervasive image quality issues affect the cap-
tions generated by state-of-the-art VLMs is critical, given that these
models are used in a wide range of assistive technologies and re-
search prototypes [24, 25, 58, 62, 96, 126].

To help bridge these gaps in the literature, this paper examines
challenges in using VLM tools to identify and understand products
through two complementary efforts. First, we report results from
a survey of 86 BLV participants that detail their experiences and
perspectives on captioning product images with existing VLM-
based tools. More than half of survey respondents emphasized
using only AI tools (over human assistance) when personal privacy
matters most, and roughly two-thirds said they would most often
use AI when reading a food label, identifying personal care products
or toiletries, and identifying an unknown item in their home. Taking
a good photo remains the hardest part of the process for many
participants (echoing [61, 74]). Even with current tools that provide
photo-taking guidance (e.g., SeeingAI, Be My AI), detecting and
resolving image quality issues remains challenging. Moreover, the
most frequently encountered error in product image captions is
missing critical information, such as product brand names and
ingredients, which can be obscured when images are of poor quality.

Building on our survey findings, we then develop a structured,
annotated dataset of 1,859 naturalistic product images (based on
the VizWiz dataset [30, 56]) and use it to evaluate how robust four
top-performing VLMs—GPT-4.1, Gemini 2.5 Flash, Llama 3.2 90B,
and Molmo 72B—are to common image quality issues. All VLMs
were proficient at product identification for high-quality images
(i.e., without blur, framing, rotation, or other issues) taken by BLV
people, with accuracy rates of 95% or better for GPT and Gemini.
Performance across all VLMs drops substantially for low-quality
images, with the best model, GPT, achieving only 75% accuracy.
Accuracy is even lower when images have multiple image-quality
issues, with GPT dropping to 69% accuracy; see Figure 1. Our re-
gression analysis confirms that all models are sensitive to image
quality issues and specific content (e.g., cans with rounded labels,
nutritional facts text panel) that reduce performance, and it also
identifies which image quality issues specific models are more sus-
ceptible to and should be a focus for improving their performance.

This paper makes three primary contributions to the accessibility
and HCI literature. First, we provide further empirical evidence of
BLV people’s preferences and experiences with VLM-based tools
for product image captioning, underscoring the continued need for
improvements in real-world product captioning applications. Sec-
ond, we discuss the complexities of disability-centered approaches
to model evaluation, including task and data selection, annotation
procedures, and determining which models and metrics to use. Our
work not only benchmarks the performance of four widely-used
VLMs, which underlie many modern-day accessibility tools, but
it also provides an example of how to approach the evaluation of
VLMs that center on BLV people’s information needs, answering
prior calls to understand and address disability bias in AI models
and systems (e.g., [47, 103, 112, 124]). Third, we provide concrete
recommendations for making VLMs more reliable for BLV people
at all stages of the development pipeline, including data curation,
improving model performance, and addressing captioning errors.

https://doi.org/10.1145/3772318.3791309
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2 Background
Describing images for BLV people has been a long-standing re-
search area in HCI. Historically, on-demand human assistance was
the primary means by which BLV people accessed visual informa-
tion about their environment. These include remote interpretation
services, such as Aira [7], that connect the caller with a trained
visual interpreter; crowdsourcing-based systems, including VizWiz
[18] and Be My Eyes [14], which ask a paid worker or volunteer to
describe an image or video; and friends, colleagues, or family mem-
bers. In the last decade, advances in computer vision have enabled
machines to provide such descriptions (e.g., [129]). For example,
early versions of Seeing AI from Microsoft combined various deep
learning techniques for computer vision and natural language pro-
cessing to describe images [83].2 More recently, vision-language
models (VLMs) have exploded in prevalence and capability, with
many tools that support image description, like ChatGPT, Gemini,
and Be My AI, all using variants of these models. Given their ubiq-
uity, our work focuses on understanding these technologies in the
context of BLV people’s need for product identification, and their
limitations when describing degraded images.

2.1 How BLV People Use VLMs for Image
Understanding

Image captioning is a well-studied task in computer vision that aims
to generate descriptive text for images and has led to extensive work
within accessible computing [56, 73, 90, 96, 116]. It is often studied
alongside other visual tasks such as visual question answering
[18, 21], object recognition [66, 97, 124], and image obfuscation [8].
With the introduction of VLMs, researchers are exploringmany new
applications of image captioning for BLV people, such as context-
aware captions for web images [96], assisting with image editing
[25], and real-time scene interpretation of live environments [24,
26, 50, 153]. Among these applications, object recognition is a core
aspect of visual access tasks [143] and represents a critical need
among BLV people [19]. Significant efforts have been dedicated
to helping BLV people identify objects [48], including personal
belongings [97, 124] and specific products [60].

More broadly, a substantial body of work has investigated how
VLMs perform in object recognition. Modern VLMs are highly per-
formant on zero-shot image identification benchmarks, such as
ImageNet [37] and MS COCO [28, 82], which cover a broad range
of objects [85]. When VLMs fail, recent work suggests that failures
are not due to inference-time (e.g., prompts; decoding strategies)
or training-time issues (e.g., learning objective) but rather to lim-
ited data frequency for the objects the model is trying to identify
[148]. Besides lacking knowledge of image content, VLMs can also
fail when the input image is distorted. While significant work has
studied how to measure image quality issues in photographs (e.g.,
[5, 44, 49, 89, 137]), relatively little has focused on the impact of
quality issues on captioning. Initial studies have examined the neg-
ative impact of visual variations [43] and the effect of synthetic
image degradation [57, 107] on captioning output, but the literature
on systematically understanding the impact of real-world image
distortions on captioning accuracy is limited.

2Architecture details for Seeing AI are sparse, but the original system’s release date
suggests it lacked attention-based mechanisms found in modern VLMs.

2.2 Understanding and Addressing Image
Quality Issues

A key issue in using VLMs for BLV people’s visual needs lies in
the photos they take. From analyzing VizWiz images, Gurari et al.
[55] found that blind users often struggle to take high-quality pho-
tographs, andmany visual questions go unanswered because images
fail to capture the relevant objects [55]. While these “low-quality”
images are often treated as edge cases (labeled as “other” [19], ex-
cluded in analysis [56], or treated as a direction for future work
[24]), they make up a significant portion of the photos taken by
blind individuals [33]. Image quality has been identified as a major
challenge in both model development [56] and user interactions
[152], leading to issues with annotation [17, 54, 113, 135] and poor
model performance [152]. For example, Davis et al. [33] analyzed
265 medication package images from the VizWiz dataset and found
that only 46% were legible. The prevalence of low-quality images
has made image quality assessment a stand-alone task in developing
image captioning tools for BLV individuals [30].

Recognizing the importance of image quality, tool designers have
made considerable efforts to support BLV people in taking photos
that both VLMs and humans can caption, with training and instruc-
tion playing a crucial role in data collection for model development
[66, 97, 111, 124]. Various techniques have been explored to improve
data collection, such as using video feeds to capture objects [97, 124],
taking sequential photos of objects [66], and sending notifications
when objects are out of frame [97]. While training may help, BLV
users still find it hard to properly orient objects or avoid uninten-
tionally capturing private content in the background [111, 124].
They may also be uncertain about how to fix photos, even when
they know objects are poorly framed [60]. Across this literature,
the emphasis is on having BLV people produce “high-quality” im-
ages for recognition, rather than systematically understanding how
image-quality issues affect their experiences with VLMs accuracy
when high-quality photos are not possible.

2.3 BLV People’s Perspectives on AI Errors
There is growing awareness among BLV people regarding AI tools
and errors, leading to many creative and adaptive strategies to
identify them [3, 9, 50, 120, 121]. Yet identifying errors can still be
difficult for BLV people. For example, when using a prototype object
recognizer to identify common food items (e.g., soda, bags of chips,
canned foods), BLV participantswere only able to identify half of the
object recognition errors, even with successive attempts, potentially
due to objects’ similarity in shape and size [61]. Moreover, most
platforms provide little support for helping BLV users understand
errors, such as confidence rates or multiple likely image descrip-
tions [3, 9]. In addition, external factors, such as low-quality images
or unreliable internet connectivity, often exacerbate perceived inac-
curacies in image captioning [152]. When users encounter delays
or fail to receive meaningful responses, they may view the system
as inaccurate or untrustworthy, even if the underlying model is
functioning properly [152]. As more products integrate VLMs into
accessibility applications for BLV people (e.g., [24, 62]), it is critical
to understand how robust they are to issues of accuracy in every-
day tasks—such as identifying household products or goods—where
details matter and inaccuracies can affect one’s health and safety.
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3 Study 1: Understanding BLV People’s
Preferences, Experiences, and Challenges
with AI-based Captioning of Product Images

To understand how image quality issues relate to errors during
captioning, we first study BLV people’s experiences using VLM-
based tools to identify and understand products, such as household
goods and foods. We extend prior work on how BLV people use
AI tools for object recognition [60, 61] by including the specific
kinds of products, what information they are seeking, and errors
that occur; the tradeoffs between using AI and human assistance
based on privacy risks [114, 115], social norms [76, 120], speed, and
other factors, as related to product identification; and the impact of
image quality on their trust and confidence in the AI tool’s output.

3.1 Method
We conducted an online survey with 86 BLV people who use AI
tools for image captioning. To clarify the distinction between vary-
ing kinds of captioning support, we first asked about the general
use of (1) human-assistance through remote sighted interpreting
services that provide crowdsourced support (e.g., Be My Eyes) or
a trained visual interpreter (e.g., Aira); (2) accessibility-specific AI
tools (e.g., Microsoft Seeing AI, Be My AI, TapTapSee, Access AI);
and (3) general-purpose AI tools (e.g., OpenAI’s ChatGPT, Google’s
Gemini, Anthropic’s Claude). Then, we focused on their use of AI
tools to identify and understand products, which we defined as,
“packaged items and objects, such as foods, toiletries, cleaning sup-
plies, and other household goods.” Finally, the survey covered their
preferences for using AI tools versus human alternatives, and their
experiences using AI to understand products (e.g., taking photos,
image quality issues, captioning errors).

We revised the survey over three iterations. First, two researchers
took the entire survey multiple times to check for language and
length. This led to revisions to the survey structure and question
wording. Then, we deployed the survey to 10 participants, including
an open-ended question at the end that allowed participants to share
any confusion or suggestions for improving the survey. This round
resulted in two questions being removed and the rewording of
others. Following these corrections, we distributed the survey to
another 10 participants. No major issues were noted at this stage,
and we proceeded with the final deployment. The final survey took
approximately 10 minutes to complete. Complete survey questions
are provided in the supplementary material.

The survey was hosted via Google Forms, which is accessible
to screen reader users, and was open in March 2025. Participants
were recruited through email lists maintained by the research team,
as well as those of the National Federation of the Blind (NFB) [2]
and the American Foundation for the Blind (AFB) [1]. Interested
participants signed up through a pre-survey screener. Eligible par-
ticipants must identify as blind or low-vision, be age 18 or older, use
a screen reader to access digital content, speak English, and reside
in the United States. Given the focus of our study, participants must
have regularly used at least one AI tool (e.g., Be My AI, Seeing AI,
ChatGPT, Gemini, Claude) for image captioning. Upon confirming
eligibility and excluding any bot-like responses, participants were
invited to take the survey using their unique email address. Partici-
pants provided consent before beginning. Each participant received

a $20 Amazon gift card after completing the survey. The survey
study was approved by our university IRB.

We received 97 survey responses, which the research team re-
viewed for duplicates and quality issues (e.g., spam-like responses
or those lacking variation). To mitigate bot responses, we required
participants to enter the email address to which the survey invita-
tion was sent; responses with invalid email addresses were removed.
In total, eleven responses were removed, resulting in a final sample
of 86. More respondents in our sample identified as women (𝑛 = 58,
67.4%) than men (𝑛 = 24, 27.9%) or non-binary (𝑛 = 4, 4.7%). Most
participants were aged 39–49 (𝑛 = 44, 51.2%) or 50–64 (𝑛 = 25,
29.1%), with smaller groups reporting age 18–29 (𝑛 = 9, 10.5%) and
65 or older (𝑛 = 8, 9.3%). Roughly 67.4% (𝑛 = 58) of participants
identified as white, with some identifying as Asian (𝑛 = 16, 18.6%),
Black or African American (𝑛 = 9, 10.5%), and/or Native American
or Alaska Native or Native Hawaiian (𝑛 = 3, 3.5%). About 7% (𝑛 = 6)
identified as Hispanic, Latino, or Spanish. More than 80% (𝑛 = 72)
of our sample had earned a bachelor’s degree or higher.

3.2 Analysis
We present descriptive statistics of our survey below. Where appro-
priate, we compare the experiences of BLV users and the effects
of different tools or image quality issues on image captioning. We
use a Mann-Whitney U Test for inferential statistics because the
data being compared are ordinal (Likert scale) [93]. Finally, we
present excerpts of quotes from open-ended responses that provide
additional context for our interpretations.

3.3 Results
Most participants (76.7%, 𝑛 = 66) reported using AI tools to identify
and understand products at least weekly, and half (50.0%, 𝑛 = 43)
used remote, sighted visual interpreting applications for these pur-
poses at least weekly. The top accessibility-focused tools used by
our respondents to identify and understand products included Be
My AI (76.7%, 𝑛 = 66), Microsoft Seeing AI (69.8%, 𝑛 = 60), and
AI captioning built into screen readers (51.2%, 𝑛 = 44); see Table 1.
Among general-purpose AI tools, participants reported using Chat-
GPT (38.4%, 𝑛 = 33), Ray-Ban Meta Glasses (29.1%, 𝑛 = 25), and
other tools. While we expected most users to regularly use AI tools
(given our recruitment criteria), a majority of participants continue
to rely on human assistance for product identification. We detail
their preferences and challenges with AI tools below.

3.3.1 AI Captioning Is Preferred for Identifying Food, Personal Prod-
ucts, and Items in the Home. Building on previous research showing
that BLV people move across human and AI assistance for access
[3, 9, 120], our findings reveal their preferences and the trade-offs
they consider when choosing between the two sources; see Figure 2,
left. When considering common scenarios for product identifica-
tion, roughly two-thirds of the participants said they would almost
always or most often only use AI when reading a label on a food
item (68.6%, 𝑛 = 59), identifying personal care products or toiletries
(67.4%, n=58), and identifying an unknown item in their home (64%,
𝑛 = 55). Surprisingly, more than 45% of participants (𝑛 = 39) said
they would almost always or most often rely on AI to read a medi-
cation label, despite multiple AI tools issuing warnings about such
use. Fewer participants said they would mainly rely on AI when
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Table 1: Total number of survey respondents who used various accessibility-specific and general-purpose VLM-based tools for
identifying products in photographs they took. Participants often used multiple tools for their visual information needs.

Type Tool Percent of Respondents (Count)

Accessibility-focused

Be My AI 76.7% (66)
Microsoft Seeing AI 69.8% (60)
AI captioning in screen reader 51.2% (44)
Access AI 30.2% (26)
TapTapSee 26.7% (23)
Google Lookout 11.6% (10)
WayAround 7.0% (6)

General-purpose

ChatGPT 38.4% (33)
Ray-Ban Meta Glasses 29.1% (25)
Google Gemini 15.1% (13)
Microsoft Copilot 12.8% (11)
Claude AI 4.7% (4)
Clarifai 1.2% (1)

checking allergen information on products (37.2%, 𝑛 = 32), com-
paring the details of two products side by side (31.4%, 𝑛 = 27), or
checking product expiration dates (27.6%, 𝑛 = 23). Although there
has been prior work on object recognition when grocery shopping
[71, 130, 151], half of the participants said they leaned towards just
relying on human-sighted assistance when searching for a specific
product at a physical store (54.7%, 𝑛 = 47) or browsing in a physical
store (48.8%, 𝑛 = 42). The cost of searching in a large space was a
key reason for this preference, with participants explaining that in
a grocery store, “a human can often infer or already know where
to go. Would take longer with just AI.”

Echoing prior work that highlights concerns about social norms
[114, 115], more than half of the participants (55.8%, 𝑛 = 48) said
they would most often or almost always only use AI to caption
products when personal privacy matters most; see Figure 2, right.
The most cited concerns include feeling embarrassed discussing
personal matters with real people and the potential misuse of their
personal information. In contrast, more participants indicated they
would most often rely on human assistance when data privacy was
most important (46.5%, 𝑛 = 40). Several people noted the dilemma
between personal and data privacy, saying, “it’s a catch-22: go with
AI-generated [services] where they store a photo, or a person who
could be copying down my information,” which led to varying
priorities regarding the associated risks. People were seen as a
greater direct risk due to the potential for bad human actors (e.g.,
“If I ask a human, someone will know”), while AI tools presented a
broader indirect risk (e.g., “A human has a limited number of people
they could potentially share the information with, but AI means
more companies can access your data”). Like data privacy, most
participants leaned towards using human-sighted assistance when
safety (53.5%, 𝑛 = 46) and accuracy (44.2%, 𝑛 = 38) mattered most,
as humans were perceived as more reliable, especially when there
was a clear and specific need, such as counting or reading text.

3.3.2 Taking Photos Remains Time-Consuming and Challenging.
Despite research on supporting BLV people to take photos [6, 64,
74, 127], it remains a key challenge for image captioning. With the

tool they used most, nearly half of the participants (47.7%, 𝑛 = 41)
said it took 2–4 minutes to get the desired information, followed by
0–1 minutes (27.9%, 𝑛 = 24) or 5–9 minutes (19.8%, 𝑛 = 17). Two-
thirds of participants (67.1%, 𝑛 = 49) said taking a good photo was
the hardest part of the captioning process, and roughly half (45.9%,
𝑛 = 34) said it took the longest. Multiple photos were often needed,
with most participants (62.8%, 𝑛 = 54) saying 2–3 photos; fewer
needed just one photo (23.3%, 𝑛 = 20) or more than four photos
(10.5%, 𝑛 = 9). For some participants, taking photos was difficult
due to physical disabilities that made it hard to hold the camera
steady. Participants described learning to take photos over time,
including learning from how Aira interpreters guide them to angle
their camera and adjust the environment for visual captioning.

3.3.3 Current Tools Make It Difficult to Assess and Resolve Image
Quality Issues. Difficulties during photo-taking can result in lower-
quality photos, which then affect a VLM’s caption quality. We
asked participants about their perceived impact of image quality
issues on the quality of AI-generated captions for products, on a
4-point scale from 1: “not at all” to 4: “to a great extent” with the
option of “I am not sure”; see Figure 3, left. Overall, BLV users
perceived image quality issues of framing (𝑚 = 3.54, 𝑠 = 0.71), blur
(𝑚 = 3.5, 𝑠 = 0.69), and distance to object (𝑚 = 3.45, 𝑠 = 0.6) to
affect caption quality the most, followed by hand placement and
position (𝑚 = 3.35, 𝑠 = 0.74), lighting (𝑚 = 3.15, 𝑠 = 0.71), and
rotation (𝑚 = 3.13, 𝑠 = 0.74). A few respondents indicated “I am
not sure”, most often for rotation (𝑛 = 15), hand position (𝑛 = 11),
and distance (𝑛 = 9), suggesting that the impact of these might be
more subtle than that of other quality issues. We also examined the
differences between Seeing AI and Be My AI (but not other tools,
due to the limited sample size). We found that framing was the
only image quality issue whose perceived impact on caption quality
was different across tools, being more impactful for Seeing AI than
Be My AI (𝑚Seeing AI = 3.79 vs. 𝑚Be My AI = 3.39; 𝑝 = 0.0076,
𝑈 = 529.5; 𝑛Seeing AI = 𝑛Be My AI = 28). This is not surprising
given that Seeing AI has a feature specifically designed to support
framing, which we discuss below.
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Given the known challenges of taking good photos, multiple
AI captioning tools include features to help BLV users understand
image quality issues and adjust their camera position during cap-
tioning. We asked how well these tools helped participants assess
image quality issues, using the same scale as the impact of image
quality; see Figure 3, right. BLV people found framing (𝑚 = 2.75,
𝑠 = 0.90), blur (𝑚 = 2.74, 𝑠 = 0.94), and rotation (𝑚 = 2.58, 𝑠 = 0.85)
as the quality issues the tools helped them assess the best, followed
by lighting (𝑚 = 2.35, 𝑠 = 0.96), distance (𝑚 = 2.22, 𝑠 = 0.82), and
hand position (𝑚 = 2.12, 𝑠 = 0.80). A few participants were unsure
when asked whether the tools helped assess quality issues in their
photographs, with the most common related to distance (𝑛 = 10),
lighting (𝑛 = 8), and hand position (𝑛 = 7), suggesting that the tools
provide less support in addressing these issues when taking photos.
We observed a significant difference between Seeing AI and Be My
AI in how well they help assess whether an image is blurry (Be
My AI more than Seeing AI;𝑚Seeing AI = 2.27 vs.𝑚Be My AI = 2.92;
𝑝 = 0.0147, 𝑈 = 191.5; 𝑛Seeing AI = 26, 𝑛Be My AI = 24), or if the
product is obscured by hand positioning (Be My AI more than
Seeing AI; 𝑚Seeing AI = 1.81 vs. 𝑚Be My AI = 2.26; 𝑝 = 0.0297,
𝑈 = 198.5; 𝑛Seeing AI = 26, 𝑛Be My AI = 23). While an in-depth anal-
ysis of why users perceive greater support for these two aspects
is beyond the scope of the present paper, we present detailed user
feedback below and note that Be My AI specifically instructs users
to ask the system questions about whether an object is centered
and focused [15]. Notably, the average scores for assessing each
quality issue range from “Very Little” and “Somewhat”, suggesting

that both tools could do more to make quality issues apparent to
BLV people.

BLV people’s open-ended responses suggest that the built-in fea-
tures for assessing image quality issues are only partially effective.
Seeing AI, for example, emits beeps to help users move an object
or product barcode into the camera’s view. When asked about this
feature, 14 people shared positive comments (e.g., “Does a great job
of letting me know when the object is in full view” and “This really
helps me when adjusting the angle of the camera and increases
my confidence”). However, 27 people shared negative or mixed
experiences with this feature, mentioning that it is not always ac-
curate regarding alignment, it is hard to rotate objects to find the
barcode, making slight adjustments and holding one’s hand steady
is problematic, and the feedback can be misleading (e.g., forcing the
camera to put a whole object in view when only a small portion is
of interest). One person said, “It’s a game of hot and cold: it takes
some trial and error every time to get it right, unless you have a
good sense of where the barcode is.” The remainder stated that they
had not used this feature (𝑛 = 21) or did not answer the question.

While Be My AI offered more detailed feedback on photos, it
also received mixed responses to its suggestions (e.g., asking users
to take a new picture, contact a volunteer, or ask questions such as
whether the photo is out of focus [15]). Of the 47 people who com-
mented on the feedback feature, 26 had positive experiences. Others
(𝑛 = 21) provided mixed or negative comments, often noting that
the feedback was limited, lacked clear guidance on resolving issues,
and still required trial and error. One person said, “It’s good to know
the photo is not clear enough, but tough to figure out sometimes
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if it’s a lighting, placement, or angle issue.” Another commented,
“It’s really just overall not helpful...the devs still really don’t get
it. It’s not enough to just say the photo’s not of good quality; you
have to tell someone how to fix it. Many of us have been blind
since birth, and how to deal with photos completely escapes us.”
What’s more, feedback was only given after the photo was taken,
with multiple participants suggesting that the tool provide more
detailed, real-time feedback on framing, lighting, and orientation.

Finally, we asked participants to rate their confidence in knowing
why a photo is not good enough, even when the tool says it is not
good enough to caption or returns a similar error. On average,
participants rated themselves as between “slightly confident” and
“somewhat confident” (𝑚 = 2.39, 𝑠 = 0.97). Only six participants said
they were “very confident” or “extremely confident” in knowing
why an image was not good enough. There were no significant
differences in confidence ratings between Be My AI and Seeing AI.

3.3.4 Captions Frequently Lack Important Detail and Contain In-
accurate Information. Although prior work indicates BLV people
expect error-prone output from AI tools [3, 9, 120], we know less
about the specific kinds of errors they experience when caption-
ing products and their relative frequency. Given this, we asked
participants how frequently they experienced various types of er-
rors with the AI tool they used most, on a 6-point scale from 1:
“Never” to 6: “Very Frequently”; see Figure 4. Overall, participants
reported the highest frequency of errors involving accurate cap-
tions that aremissing critical information (𝑚 = 3.82, 𝑠 = 1.20). Other
frequently experienced errors were captions that are not accurate
(𝑚 = 3.24, 𝑠 = 1.12) and product captions that are only partially
correct (𝑚 = 3.32, 𝑠 = 1.06). They somewhat less frequently ex-
perienced captions that include extra incorrect details (𝑚 = 3.01,
𝑠 = 1.25) and captions that are completely made up (𝑚 = 2.66,
𝑠 = 1.41). There were no significant differences in perceived fre-
quency of errors between users of Seeing AI and Be My AI. When
asked how frequently they verify captioning output regarding prod-
ucts with a human visual interpreter or another sighted person,
more than half of the participants said “rarely” or less (𝑚 = 3.44,

𝑠 = 1.27). This aligns with Hong and Kacorri’s findings on the
overall verification frequency [61].

Many participants reported captions missed critical information
and lacked details they were specifically seeking, especially regard-
ing brand names, varieties, and ingredients. Respondents said, “I’m
trying to find out the color of a lipstick I want to wear, it may
capture every bit of info other than the color name, which is very
frustrating,” and “Many times, Seeing AI does not find the exact
title of my yogurt.” Others described receiving accurate, general
information but lacking needed specificity, such as “AI just says
that the product is ‘beans’ but doesn’t specify what type of beans,”
and “I was trying to find out if I was holding a pack of pork chops
or neck bones... It would only tell me it was a package of meat.”

In addition to captions frequently missing critical information,
participants described captions that were not accurate (e.g., rec-
ognizing a pregnancy test as a pen, a pair of boots as food item,
protein bars as stuffing mix, green beans as spark plugs) as well as
partially correct, such as getting the product type correct but the
specific details wrong (e.g., garlic powder as turmeric spice, frozen
shrimp as frozen chicken, agave nectar as maple syrup). Partially
correct captions can be more difficult for BLV people to assess and
cause potentially life-threatening issues. One person recalled that
Be My Eyes AI correctly identified a lotion bottle but got the spe-
cific variety wrong, saying it, “left a horrible white cast on my skin,
which I didn’t notice until someone told me.” Another explained
that canned pears were identified as canned peaches and that, while
both are canned fruits, such errors could be fatal: “My husband
is very allergic to peaches, and this probably would have meant
a Benadryl shot for him if he’d gotten the wrong product.” Simi-
larly, one person said, “It has told me completely different names
of medicines than what is printed on the packet,” highlighting yet
another case where accurate details are essential. Respondents iden-
tified these errors based on their life experience (e.g., “it seemed like
it was taking me way too long to finish the prescriptions and then I
called the pharmacy to verify” and “It told me a name of medicine I
knew I never had.”), or by asking sighted people. Either way, people
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became cautious about using AI in life-threatening situations and
turned to people or to more tested technologies (e.g., Script Talk
for medications, which uses RFID technology [42]).

Survey respondents also provided insight into how product de-
sign and packaging affect caption accuracy, confirming prior work
regarding medical product packaging [33]. Many of these errors
stem from package designs that are difficult to photograph effec-
tively, particularly those with rounded or reflective surfaces (e.g.,
“It won’t read...all instructions on rounded bottles like eye drop
bottles,” and “It usually takes more time and lots of rotating the can
to piece together the information I’m looking for”).

3.4 Final Reflections
Near the end of the survey, we asked BLV people what they would
like to communicate to researchers and developers building these
tools. Respondents across the board emphasized accuracy and pre-
cision, saying “I need accuracy and precise captions,” “Be more
specific!” and “Please, please be sure your tools are accurate. Es-
pecially if people are using it for life-reliant things like medicine.”
Others emphasized frustration (e.g., “It’s really frustrating that I
have to go through so many hoops just to be able to find out what’s
in a box or can”) and that there is more work to be done, saying
developers need to “Take time to understand the specific use cases
and needs that are unique to users who are blind or low vision.”
Another suggested that many of the issues BLV people are fac-
ing with such tools are because underlying models are typically
“trained by non-disabled people, [and] show implicit bias toward
disabled people.” Their final reflections underscore the importance
of evaluating how the image quality issues BLV people contend
with daily—which are often set aside in research—affect whether
VLMs can accurately identify products with the level of detail that
BLV people need for safe and effective use.

4 Study 2: Evaluating VLM Caption Accuracy
for Product Understanding

Given the pervasive challenges with using VLMs to identify prod-
ucts, we systematically examine how image quality issues affect a
VLM’s ability to identify them correctly and in detail.

4.1 Challenges in Evaluating VLMs’ Product
Captioning Performance

We initially conducted experiments using Gurari et al.’s VizWiz Im-
age Captioning dataset [56], but encountered two challenges. First,
captions from crowdworkers varied in whether they correctly iden-
tified products and the level of detail provided, making it difficult
to assess whether a VLM was performing poorly or if we lacked ac-
curate product identification data to benchmark the model against.
Second, existing metrics for measuring caption quality—like BLEU
[102], METEOR [12], ROUGE [81], CIDEr [128], SPICE [11], and
BERTScore [147]—primarily measure text alignment and are unreli-
able for evaluating correctness of product information in captions.
Adding images to such measures (e.g., Vilbertscore [72], TIGEr [65],
SCAN [75]) or using reference-free measures (e.g., CLIPScore [59])
can help, but degraded images can be a confound in their scores. In
short, reliance on these metrics could lead to false positives, where
a caption appears reasonable even when it contains serious errors
or omits critical information. These challenges motivated us to
develop a dataset with verified annotations to determine whether
products were correctly identified in captions.

4.2 Method
4.2.1 Data Selection. To create a dataset focused on products, we
start with Gurari et al.’s VizWiz Image Captioning dataset [56],
which includes five crowdworker-provided image captions on pho-
tos taken by blind people, and Chiu et al.’s VizWiz Image Quality
Assessment dataset [30], which includes annotations on image qual-
ity issues by five crowdworkers. Using their training dataset (23,431
images), we first filter for images for which humans can confidently
provide a caption, indicating that image quality issues are not se-
vere enough to prevent image description. We select these data by
including images for which two or fewer crowdworkers indicated
the image was unrecognizable (conversely, three to five crowdwork-
ers provided a caption). Upon inspecting the dataset, we noticed
that most product images included text; therefore, we only included
images in which crowdworkers identified text as a heuristic for
product identification. This resulted in a filtered dataset of 14,398
images (61.5% of the original dataset).
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We then created two data subsets. First, we focused on high-
quality product images without quality issues, serving as a bench-
mark for evaluating the performance of VLMs in product identi-
fication on natural images. We selected images for which 4 or 5
crowdworkers flagged no issues, and at most 1 person flagged each
image quality issue, resulting in 2,599 images (11.1% of the original).
Second, we created a dataset of low-quality images, where 4 or 5
crowdworkers flagged the image having an image quality issue
(blur, rotation, framing, obstruction, being too bright, or being too
dark), resulting in 5,432 images (23.2% of the original). This dataset
corresponds to images for which human captioners felt confident
providing a caption, despite identifying image quality issues that
could potentially hinder their accuracy.

To assess how accurately VLMs identify products, we manually
reviewed all images and identified those that appeared to contain
products. Four researchers reviewed all images in each subset. They
excluded images that did not include products, such as nondescript
boxes or pictures of rooms in the home. We excluded images of
computer screenshots, currency, printed papers, books, CDs, DVDs,
clothing, and unpackaged electronic devices. These were, on the
whole, difficult for annotators to verify objectively, such as iden-
tifying an article of clothing or the name of a book from a page
of its text.3 We also excluded any images where more than one
product is pictured. For the high-quality images specifically, we
also excluded any product images with even mild distortions (e.g.,
camera blur, lens flares) to ensure the subset was free of image-
quality issues. This resulted in a high-quality subset of 729 images
and a low-quality subset of 1,696 images.

4.2.2 Data Annotation. Our survey results showed that BLV people
want specific product information when selecting foods, medicines,
and personal products. To capture howwell VLMsmeet these needs,
we developed a three-part annotation scheme consisting of:

• Product: the generic term for the product (e.g., cereal, soup,
meal, medication).

• Brand: any detectable brand information (e.g., Betty Crocker,
Kraft, Great Value, Kellogg’s).

• Variety: details about the type, flavor, or variety (e.g., peanut,
low sodium)

A team of four researchers manually annotated each image using
this structure. When annotating a product, researchers reviewed
the image and crowdworkers. If unsure, researchers also searched
online for product images or noted that they were unsure about
the image, so another researcher could review it. The image was
excluded from the dataset if researchers were uncertain about the
pictured product. For example, we excluded images that showed
only product barcodes or lacked the visible details required for
product verification. To ensure the validity of product annotations,
a second researcher then reviewed and confirmed agreement with
each image and annotation. Any discrepancies were flagged for
discussion, and if no agreement was reached, the image was re-
moved from the dataset. To enable consistency in product naming,
the research team aimed for the most specific name within the

3While these are real-world cases where objects are ambiguous and valuable to identify,
we require images with clear, correct, and assessable annotations to understand how
VLMs fail (our focus), where more ambiguous or hard to verify examples could create
a confound in our analysis.

product (e.g., granola instead of cereal, Sprite instead of soda) and
included both brand and sub-brand names when available. When
possible, we included known flavor or ingredient details (e.g., vanilla
soymilk; chicken with potatoes and green beans) and details related
to dietary needs or potential allergies (e.g., zero-sugar Gatorade,
peanut butter granola bars). This detailed, validated labeling is dis-
tinct from coarse object and product labels in prior work [55, 66].
This process yielded a final dataset of 1,859 images annotated with
product details, comprising 729 high-quality and 1,130 low-quality
images. See Appendix A, Table 8 for the number of images where
0–5 crowdworkers identified an image quality issue.

During data annotation, researchers also noted product properties
that may affect caption quality, including when labels were rounded
(e.g., on cans, bottles) or contained large panes of text (e.g., nutrition
label, back of box recipes) by double-coding if a product had one or
both properties. We identified 622 (33.5% of our dataset) products
with rounded labels, 126 (6.8%) with large text panels, and 49 (2.6%)
with both characteristics (e.g., back of a can).

Finally, two researchers observed that while the agreement of
two crowdworkers on the presence of blur or framing issues effec-
tively captured issue quality, it did not for rotation. Therefore, the
researchers recoded rotation as an orientation beyond 45 degrees
from the product’s natural axis—depending on the product’s top
and bottom (such as a can) and text orientation—marking the image
as rotated if both agreed. Tables 5 and 6 include selected examples of
product images showcasing various image quality issues; additional
examples can be found in Figure 1 and Appendix B.

4.2.3 Generating Captions From VLMs. We used four different
VLMs to generate captions for our dataset. We include GPT-4.1
since the three most commonly used AI tools in our survey—Seeing
AI [16], Be My AI [13], and OpenAI’s ChatGPT [100]—all use a
GPT-4 class model from OpenAI. We include Google’s Gemini 2.5
Flash, another frequently used model. Finally, we include two re-
cently released open-source models: Llama from Meta [53]4 and
Molmo from the Allen Institute for AI [35], which both exhibit com-
parable performance to closed-source industry models on bench-
marks. We include open-source models since BLV people in our
survey and prior work [114, 115] expressed concerns about data
privacy when using LLMs, which open-source models can address
when run locally. Moreover, open-source models provide access
to the model architecture, training regime, and, in some cases,
training data (e.g., Molmo), affording greater flexibility for im-
proving performance than closed-source models. For GPT-4.1, we
used OpenAI’s API and selected the gpt-4.1-2025-04-14 [101]
model checkpoint for reproducibility. For Gemini 2.5 Flash, we used
Google’s API for gemini-2.5-flash [52]; Google does not provide
a more specific model checkpoint. For Llama and Molmo, we used
Llama-3.290B-Vision-Instruct [94] and Molmo-72B-0924 [10]
from Hugging Face, with 4-bit quantization.5 Llama and Molmo
were run locally on two NVIDIA RTX A6000 GPUs. For all models,

4The Ray-Ban Meta Glasses, the most used general-purpose AI tool after ChatGPT,
are also powered by a version of Llama [95]
5We tested the smaller Llama-3.2-11B-Vision-Instruct and Molmo-7B-D-0924
with 16-bit precision, but found that the larger, quantized models performed bet-
ter while fitting within our compute limitations. Prior work suggests that performance
loss is marginal with 4-bit quantization [39, 46].
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we set temperature = 1.0 and top_p = 0.95 to balance determin-
ism and randomness of output generation6, and max_new_tokens
= 500 for generated tokens to allow for detailed captions. Before
generating captions, images were converted to PNGs with the alpha
channel removed—since some VLMs perform poorly with trans-
parent images—but no additional processing was done (e.g., blur
reduction; image super-resolution). For brevity, we refer to the
VLMs as “GPT”, “Gemini”, “Llama”, and “Molmo” in the following.

We instructed each VLM to caption each image with the same
prompt; see Appendix C. Our prompt was inspired by prior work
using VLMs to describe images for BLV people [24, 63, 96], and
developed following best practices [99]. We focused on prompting
the VLM to identify key features, such as the object, product type,
brand names, and variety details essential to understanding the
product in the image while abstaining from vague language.

4.2.4 Dataset Coding. As the final step in our dataset creation pro-
cess, we manually verified the correctness of each VLM-generated
caption. We performed human coding due to the issues with ex-
isting captioning metrics (see Section 4.1) and because LLM-as-
judges—while correlating well with human judgment for simple
question-answer tasks [154]—may be falsely lenient on more open-
ended tasks, like slightly incorrect product descriptions (e.g., Coke
Zero versus Diet Coke) [122]. All VLM captions were anonymized
to minimize potential bias during coding (i.e., Models A, B, C, D),
and any image metadata (e.g., what quality issues were present)
was concealed, except for the product annotations. The order of
images was also randomized to reduce any ordering effects.

Four researchers coded the accuracy of the four VLM captions
for each of the 1,859 images in our dataset (7,436 captions in total).
Before coding, the research team developed a coding scheme that
allowed for minor spelling mistakes and term variation (e.g., soda vs.
soft drink; chips vs. crisps) but was strict on key details (e.g., brand
and sub-brand; ingredients when describing food variety). Captions
were marked as incorrect if there were major hallucinations (e.g., 12
ounces reported as 12-pack, for a soda can) or contained errors that
changed their meaning (e.g., grilled chicken instead of fried chicken).
In this way, our evaluation measures both recall (the model gets
all details) and precision (what the model says is largely correct).
Each researcher coded a sample of 50 randomly selected images
with all VLM captions (a total of 200 captions). IRR was computed
using Krippendorff’s alpha, with an agreement of 0.859. Following
the training period, the four researchers independently coded the
remaining images, marking ones theywere unsure about as “maybe”.
The team reviewed and discussed these and other challenging cases.
Our final dataset is available in the supplementary materials.

4.2.5 Analytical and Statistical Approach. The first step in our anal-
ysis was to assess the overall accuracy of VLMs for identifying
products across the range of image attributes and quality issues pre-
viously identified. We computed descriptive statistics to determine
how often each VLM correctly identified products across different
image quality types, image quality issues, and product properties.

6We tested various temperature (0–1.0) and top_p (0–1.0) settings. temperature had
little effect on product identification quality. In contrast, top_p caused more noisy
captions above 0.95 (the default for our models). These settings are similar to prior
work that has used VLMs for image captioning [23, 98].

The next stage of our analysis applied inferential statistics to
determine how different types of image degradations and product
properties influence each VLM’s ability to accurately identify prod-
ucts. We modeled this relationship over a series of logistic regres-
sions. We began with a single model that included all images and
captions for each VLM. This allowed us to assess overall patterns
in how the VLMs performed with degraded images, and to make
direct statistical comparisons of performance across VLMs. The
model predictors included binary variables capturing image quality
dimensions (blur, framing, and rotation)7, product image properties
(rounded label, text panel), and a categorical factor representing
the VLMs (GPT, Gemini, Llama, Molmo). We binned each image
quality variable as either true (if 2–5 crowdworkers reported the
issue) or false (if 0—1 crowdworkers did). Because image quality is-
sues co-occur [30], we included all two- and three-way interactions
among image quality issues, two-way interactions between image
quality issues and product properties, and two-way interactions
between image quality issues and the VLM factor.

Our final analyses fit a set of independent logistic regression
models for each VLM. This allows us to more clearly delineate and
assess how a given VLM’s performance degrades across different
image quality issues. The predictors in these models include im-
age quality dimensions (blur, framing, and rotation) and all two-
and three-way interactions among them; product properties were
excluded because they led to poorer model fit.

We used the Akaike Information Criterion (AIC) metric during
model development to compare candidate models and determine
final model parameterizations. The AIC metric assesses the balance
between model fit and complexity, penalizing models with exces-
sive numbers of parameters to avoid overfitting. We observed no
outliers in the dataset, nor evidence of multicollinearity in the final
models (all variance inflation factor (VIF) scores were less than five).
Statistical modeling was performed using R (v 4.5.2) [123].

Tables 4 and 7 present the logistic regression coefficients as
logits (i.e., log-odds). In the findings below, we report these as the
percentage change in the odds of correctly identifying products
(i.e., 100 ∗ (exp (𝛽) − 1)) for interpretability.

4.3 Findings
4.3.1 VLMs Struggle to Identify Products on Low-Quality Images.
All VLMs struggled to provide accurate captions for degraded im-
ages; see Table 2. For high-quality images, GPT and Gemini per-
formed well, recognizing 98.5% and 95.7% of products, respectively.
Accuracy for open-source models was slightly less, with Llama
correctly recognizing 86.1% and Molmo 86.8%. Performance across
all VLMs dropped substantially for low-quality images, with the
best model, GPT, achieving only 74.9% accuracy. Gemini performed
slightly worse than GPT (71.7% accuracy), but Llama and Molmo
fared much worse, at 44.1% and 36.1% accuracy, respectively.

What’s more, accuracy is even worse when images have multiple
distortions, with GPT dropping to 69.4%, Gemini to 66.9%, Llama
to 36.1%, and Molmo to 27.8%. While identifying over two-thirds
of products in images with image quality issues may not seem

7We excluded the variables for obstruction, too dark, and too bright from the analysis
due to extreme class imbalance and an insufficient number of true cases, which violate
the assumptions required for reliable model estimation. See Table 2, Low-Quality,
Single Issue, Row “Other Quality Issues”.
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Table 2: VLM accuracy for identifying products, given different image quality issues present. All models perform well on
high-quality images taken by BLV people. However, accuracy drops sharply as image quality issues compound.

Image Type Image Quality Issue Num. Images GPT Gemini Llama Molmo

High-Quality None 729 (100.0%) 718 (98.5%) 698 (95.7%) 628 (86.1%) 633 (86.8%)

Low-Quality Overall All Issues 1130 (100.0%) 846 (74.9%) 810 (71.7%) 498 (44.1%) 408 (36.1%)

Low-Quality,
Single Issue

Blur 143 (12.7%) 112 (78.3%) 113 (79.0%) 71 (49.7%) 74 (51.7%)
Framing 250 (22.1%) 209 (83.6%) 191 (76.4%) 139 (55.6%) 124 (49.6%)
Rotation 55 (4.9%) 49 (89.1%) 48 (87.3%) 39 (70.9%) 19 (34.5%)
Other Quality Issues 12 (1.1%) 11 (91.7%) 10 (83.3%) 7 (58.3%) 5 (41.7%)

Single Issue Total 460 (40.7%) 381 (82.8%) 362 (78.7%) 256 (55.7%) 222 (48.3%)

Low-Quality,
Multiple Issues

Blur and Framing 242 (21.4%) 172 (71.1%) 164 (67.8%) 88 (36.4%) 86 (35.5%)
Blur and Rotation 75 (6.6%) 43 (57.3%) 50 (66.7%) 27 (36.0%) 14 (18.7%)
Framing and Rotation 146 (12.9%) 113 (77.4%) 103 (70.5%) 69 (47.3%) 41 (28.1%)
Blur, Framing, and Rotation 132 (11.7%) 84 (63.6%) 86 (65.2%) 36 (27.3%) 21 (15.9%)
Other Co-Occurring Issues 75 (6.6%) 53 (70.7%) 45 (60.0%) 22 (29.3%) 24 (32.0%)

Multiple Issues Total 670 (59.3%) 465 (69.4%) 448 (66.9%) 242 (36.1%) 186 (27.8%)

Table 3: VLM product identification accuracy is not always affected by rounded labels, like canned foods, or text panels, like
nutrition labels. Compared to images with no rounded label or text panel, GPT, Gemini, and Llama show little to no performance
loss in the rounded-label-only and text-panel-only conditions across high- and low-quality images; across all images, Molmo’s
performance drops when only text panels are present. Gemini, Llama, and Molmo all experience performance drops when
both a rounded label and a text label are present (e.g., a nutrition label on a can) across all images.

Image Type Product Image Property Num. Images GPT Gemini Llama Molmo

High-Quality

Overall (All Images) 729 (100.0%) 718 (98.5%) 698 (95.7%) 628 (86.1%) 633 (86.8%)
Without Rounded Label or Text Panel 356 (48.8%) 350 (98.3%) 338 (94.9%) 302 (84.8%) 311 (87.4%)
Rounded Label Only 334 (45.8%) 330 (98.8%) 324 (97.0%) 293 (87.7%) 293 (87.7%)
Text Panel Only 30 (4.1%) 29 (96.7%) 29 (96.7%) 26 (86.7%) 22 (73.3%)
Rounded Label and Text Panel 9 (1.2%) 9 (100.0%) 7 (77.8%) 7 (77.8%) 7 (77.8%)

Low-Quality

Overall (All Images) 1130 (100.0%) 846 (74.9%) 810 (71.7%) 498 (44.1%) 408 (36.1%)
Without Rounded Label or Text Panel 706 (62.5%) 522 (73.9%) 500 (70.8%) 303 (42.9%) 244 (34.6%)
Rounded Label Only 288 (25.5%) 222 (77.1%) 211 (73.3%) 137 (47.6%) 123 (42.7%)
Text Panel Only 96 (8.5%) 71 (74.0%) 72 (75.0%) 41 (42.7%) 29 (30.2%)
Rounded Label and Text Panel 40 (3.5%) 31 (77.5%) 27 (67.5%) 17 (42.5%) 12 (30.0%)

problematic, the stakes for misidentifying products are higher for
BLV people, especially for products with health or safety-related
issues. For instance, Davis et al. showed how medical packaging
presents a challenging task for VLMs and is a case where knowing
the correct medicine and dosage is critical [33]. Moreover, images
with multiple degradations are common in our dataset, comprising
nearly 60% of all low-quality images and 36% of the entire dataset.

Recognizing products with rounded labels is generally challeng-
ing [33], as is identifying products from a large panel of text. How-
ever, we found that these product properties do not always affect
the studied VLMs; see Table 3. For high-quality images with only
rounded labels or only text panels, GPT, Gemini, and Llama had
little to no performance loss compared to high-quality images with
neither (maximum drop of 1.6%, for GPT on text panels only). For
low-quality images, performance loss for these models was similar

(maximum drop of 0.2%, for Llama on text panels only). Molmo
showed a larger drop in performance for text panels in high-quality
images (87.4% to 73.3%) and low-quality images (34.6% to 30.2%).
However, product images with both rounded labels and text pan-
els had a greater impact on performance. While GPT remained
unaffected, Gemini, Llama, and Molmo all dropped to 77.8% for
high-quality images and similarly for low-quality images (67.5%,
42.5%, and 30.0%, respectively). We suspect that performance drops
due to text panels occur because VLMs overfocus on visible text
details, leading them to become conflicted between text and visual
details, which in turn leads to incorrect inferences [36]. Molmo
did this frequently, including one instance in which it labeled a
carton of “O Organics almond milk” as “Horizon Organic” because
it read “organics”, despite the carton’s completely different design;
see Appendix B, Table 13.
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Table 4: Logistic regressionmodel across all images andVLMs,
which shows us general challenges VLMs face when describ-
ing degraded images. The model coefficients represent logits
(i.e., log-odds). p-value significant at: * 0.05; ** 0.01; *** 0.001.

Independent Variable Estimate

(Intercept) 3.6402***
Blur = True -2.1414***
Framing = True -1.8610***
Rotation = True -1.5839***

Rounded Label = True 0.0938
Text Panel = True -0.5707**

Model = Gemini -0.5987**
Model = Llama -1.7674***
Model = Molmo -1.8242***

Blur and Framing = True 1.1892***
Blur and Rotation = True 0.5838*
Framing and Rotation = True 1.0371***
Blur, Framing, and Rotation = True -0.5610*

Blur and Rounded Label = True 0.0202
Framing and Rounded Label = True -0.1693
Rotation and Rounded Label = True 0.5980**

Blur and Text Panel = True -0.1057
Framing and Text Panel = True 0.8561***
Rotation and Text Panel = True -0.0923

Blur = True and Model = Gemini 0.4816*
Blur = True and Model = Llama 0.2167
Blur = True and Model = Molmo 0.3438

Framing = True and Model = Gemini -0.0436
Framing = True and Model = Llama 0.0839
Framing = True and Model = Molmo 0.0260

Rotation = True and Model = Gemini 0.3053
Rotation = True and Model = Llama 0.2684
Rotation = True and Model = Molmo -0.5686**

Null deviance (df = 7435) 9026.8
Residual deviance (df = 7408) 6966.6
AIC 7022.6

4.3.2 Effects of ImageQuality on Product Identification Accuracy
Across VLMs. Our regression results reveal that image quality issues
impact all VLMs when identifying products; see Table 4. All image
quality variables (blur, framing, and rotation) were statistically sig-
nificant and negative, indicating that their presence increases the
likelihood that the studied VLM would incorrectly identify a prod-
uct. Blurred images were the most likely to be incorrect, reducing
the odds of correct product identification by 88.3%. We hypothesize
that all four VLMs are trained on high-quality (i.e., non-blurry)
images and never learn to handle blurred images during inference.
In examples of blurred images, we observe discrepancies in identi-
fying the product generally versus providing necessary details for

BLV (see Table 5, row 1–2)8 For example, GPT and Gemini correctly
identify a box of Chewy Lemonhead & Friends candy, while Llama
only identifies “Lemon Head” (missing “& Friends” sub-brand) and
that it is candy (missing “chewy” variety). Molmo similarly misses
sub-brand and variety details. This suggests that VLMs can capture
large, easily readable text, such as brand labels, that is more resis-
tant to distortion than fine-text details (e.g., food flavor). In another
example, only GPT can correctly identify a can of Great Value light
red Kidney Beans; Llama can identify the brand, but not “kidney
beans”; Gemini and Molmo identify nothing correctly.

Framing was the second-most problematic image-quality issue
acrossmodels, reducing the odds of correct product identification by
84.5%. Specific examples from show that framing issues even affect
the identification of common U.S. brands (e.g., Tide detergent, Sprite
Zero), which almost certainly occur frequently in the internet-scale
training data for these models; see Table 5, row 3–4. What makes
framing interesting is how well VLMs fill in or infer the rest of the
content. Each VLM was varied in this regard. For example, GPT
and Gemini could fill in “Tid” and “DS” for Tide Pods, while Llama
could fill in “Tide” and Molmo filled in neither (despite recognizing
it was laundry detergent). However, no models could fill in “Sprite”.

Finally, rotation was the least problematic image quality issue,
reducing the odds of correct product identification by 79.5%. Quali-
tatively, we found that rotation makes it harder for VLMs to under-
stand fine text details—which often includes key details about the
product—compared to larger attributes, like brand text and logos,
or well-known varieties (e.g., Diet for Coke); see Table 6. For prod-
uct and variety details, we observed that GPT, Llama, and Molmo
failed to identify the product (herb tea) and brand (Bigelow) of a
K-Cup pod, whereas Gemini was correct. In the second example of
Select Choice Chewy granola bars, all models identified the product
(granola bars) and variety (chewy, with chocolate chips), but only
GPT correctly recognizes the brand.

As shown earlier, co-occurring quality issues can negatively im-
pact performance and are common in BLV people’s photos [30],
complicating the challenge of using VLMs to identify products. The
regression results reveal significant two-way interaction effects
between blur and framing (𝑝 < 0.001), blur and rotation (𝑝 < 0.05),
and framing and rotation (𝑝 < 0.001). The interaction plots reveal
that when two image quality issues co-occur (e.g., blur and mis-
framing), the drop in performance is less steep than when only one
issue is present. We also observe a significant three-way interaction
among blur, framing, and rotation (𝑝 < 0.05); inspection of this in-
teraction plot reveals a similar pattern to the two-way interactions,
where additional image quality issues reduce performance, but not
to the same extent as a single issue. This suggests that once product
images are sufficiently degraded, models struggle to identify them,
regardless of further image degradation. Our qualitative observa-
tions echo these findings; see Appendix B, Table 12. For example,
all four VLMs failed to identify a box of Mucinex Expectorant med-
ication when the image is blurry, rotated 90 degrees, and half of
the “M” in Mucinex is out of frame (despite the rest of the label
being visible). Yet in a second image, moved ever so slightly so that

8Our examples focus on brands from English-speaking countries, primarily the U.S.,
which the studied models should perform the best on. While our dataset includes
brands from other English-speaking countries (e.g., crisps in the U.K.), these examples
are sparse and less likely to be in training data for models built by U.S. companies.
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Table 5: Examples of blurred (rows 1–2) and misframed (3–4) product images where VLMs struggle to correctly identify products.
Captions had to include accurate product, brand, and variety information to be coded as correct. Captions were shortened for
presentation purposes only, indicated by [...].

Image Annotation GPT Gemini Llama Molmo

Product:
candy

Brand:
Lemonhead
& Friends

Variety:
chewy

[Correct] Box of Chewy
Lemonhead & Friends candy,
assorted fruit flavors, with a
yellow background and cartoon
fruit characters on the front.

[Correct] A rectangular yellow
box of Chewy Lemonhead &
Friends candy. The box has a
yellow background with a
vertical rainbow stripe on the
right side. The words “Chewy
Lemonhead & Friends” are
printed in large, colorful letters
on the front of the box. [...]

[Incorrect] Product Information:
- Object Type: Box
- Product Type: Candy
- Brand: Lemon Head
- Variety: Lemon [...]

Missing:
- brand: Lemonhead & Friends
- variety: chewy

[Incorrect] Bag of Lemonhead
candy featuring 4 fruity flavors,
displayed against a wooden
background.

Missing:
- brand: Lemonhead & Friends
- variety: chewy

Product:
kidney
beans

Brand:
Great
Value

Variety:
light red

[Correct] Can of Great Value
light red kidney beans, with a
white label and image of kidney
beans on the front.

[Incorrect] A metal can of Dole
brand sliced strawberries in
syrup. The can is white with red
and blue lettering. The top of the
can features the Dole logo in blue,
with the words “sliced red sweet
strawberries” beneath it in red.
Below the text is an image of
several red strawberries in syrup.

Missing:
- product: beans
- brand: Great Value
- variety: light red kidney

[Incorrect] The object is a can.
The can is white with blue text
and a red image on it. The can is
a soup can, specifically a tomato
soup can. The can is from the
Great Value brand. The can is
14.5 ounces. The can is white,
rectangular, and has a red image
of tomatoes on it.

Missing:
- product: beans
- variety: light red kidney

[Incorrect] Cylindrical white
can containing Honeysuckle Hill
Turkey Chili, featuring blue text
and an image of cooked ground
meat

Missing:
- product: beans
- brand: Great Value
- variety: light red kidney

Product:
laundry;
detergent

Brand:
Tide

Variety:
PODS

[Correct] Plastic bag of Tide
Pods laundry detergent,
featuring the Tide brand logo
with orange, yellow, and purple
color patterns and the word
“detergent” in multiple languages.

[Correct] A Tide PODS
laundry detergent package. It is
a large, rectangular, plastic pouch
with a red background and
orange, yellow, and blue stripes.
The word “détérgent” is printed
in white letters on the front of
the package.

[Incorrect] The product is a red
plastic container with a yellow
and orange label, featuring the
brand name Tide in large white
letters. [...] The label features the
brand name prominently at the
top, with the words “detergent”
and “detergente” written in
smaller text below it. [...]

Missing:
- product: laundry
- variety: PODS

[Incorrect] A round laundry
detergent container with red
coloring, featuring the letter ‘e’
on the left side and a bullseye-like
circle with a blue wave in the
center. The word ‘detergent’ is
written in three languages.

Missing:
- brand: Tide
- variety: PODS

Product:
soda/soft
drink

Brand:
Sprite

Variety:
zero;
12-pack

[Incorrect] Twelve-pack of Dr
Pepper Zero soda in 12 fluid
ounce cans, blue packaging with
white and light blue text and
bubble graphics.

Missing:
- brand: Sprite

[Incorrect] A 12-pack of
12-ounce cans of Pepsi Zero
Sugar. The packaging is a blue
cardboard box with the word
“zero” printed in white.

Missing:
- Product: soda/soft drink
- brand: Sprite

[Incorrect] Product Description
- Object Type: Blue cardboard
12-pack
- Product Type: Soft drink
- Brand: Pepsi
- Variety: Zero Sugar
- Visual Features:
+ Color: Blue
+ Size: 12 cans, 12 fluid ounces
each

Missing:
- brand: Sprite

[Incorrect] Pepsi Zero soda
12-pack. Royal blue packaging
with white text displaying brand
name and product details. Case
contains 12-12 fl oz cans (144 fl oz
total). Zero sugar variety.
Packaged in a cardboard box.

Missing:
- brand: Sprite

the “M” in Mucinex is fully in view but still blurred and rotated
90 degrees, three of the four VLMs correctly identify it. Further
disentangling how co-occurring image quality issues affect product
identification is an important area for future work.

As we saw earlier, rounded labels and text panels had varying
effects on model performance; our regression results provide a
clearer illustration. Only text panels caused a significant drop in
performance, reducing the odds of correct product identification
by 43.5%. An interaction effect for framing by text panel was also
significant (𝑝 < 0.001), with the interaction plot showing that
framing generally reduces performance, but no text panel results

in poorer performance when misframed. This suggests that text
panels can provide the VLM with clues about the product (e.g.,
from a longer description of a frozen meal), even if other identifying
features are not in clear view (e.g., the brand logo or meal title).
While having a rounded label had an insignificant effect on product
identification odds, the interaction effect for rotation by rounded
labels was significant (𝑝 < 0.01), with the drop in performance
being less steep than when only one variable is true (similar to
image quality interactions). Appendix B, Table 13 shows examples
of these effects. For instance, no model correctly identified the
ground beef as 90% lean, 10% fat, despite it being clearly visible
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Table 6: Examples of rotated product images where VLMs struggle to correctly identify products. Captions had to include
accurate product, brand, and variety information to be coded as correct. Captions were shortened for presentation purposes
only, indicated by [...].

Image Annotation GPT Gemini Llama Molmo

Product:
herb tea

Brand:
Bigelow

Variety:
I love
lemon

[Incorrect] Yellow plastic bottle
cap from a Bickford’s I Love
Lemon Iced Tea bottle. The text
on the cap mentions the flavor
(Lemon), product type (Iced Tea),
and brand (Bickford’s). The cap is
round with textured yellow
plastic.

Missing:
- product: herb tea (incorrectly
identified as iced tea)
- brand: Bigelow

[Correct] A yellow K-cup for
Bigelow I Love Lemon Herb
Tea. The lid is covered with a
textured pattern. Purple text on
the lid reads, “Bigelow I Love
Lemon Herb Tea,” with “Le
citron... j’adore!” printed below it.

[Incorrect] Yellow plastic
container with circular shape and
slightly raised edges. The brand
name “BIGZIONY” is written in
purple letters at the bottom of the
container. The container has a
textured surface and features
purple text, including “Love,
Lemon” and “High Tea”, which
are likely product labels or
descriptions. [...]

Missing:
- product: herb tea
- brand: Bigelow
- variety: I love lemon

[Incorrect] Blue rectangular box
of Land O’Lakes butter. Yellow
circular lid on top with purple
print. Text includes ‘Land
O’Lakes’, ‘Since 1921’, ‘Buttery’,
‘Smooth’, ‘Taste’, ‘Quality’, ‘From
our family of farm owners to
yours’, ‘5 pounds’, ‘One pound
rolls’, ‘454 grams’, ‘Made in USA’,
‘Land O’Lakes, Inc.’, ‘Arden Hills,
MN 55112’.

Missing:
- product: herb tea
- brand: Bigelow
- variety: I love lemon

Product:
granola
bars

Brand:
Select
Choice

Variety:
chewy;
chocolate
chip

[Correct] Box of Select Choice
Chewy Chocolate Chip
Granola Bars, 5 bars, each
weighing 1.25 ounces. The box is
mostly red with a picture of a
granola bar containing oats and
chocolate chips.

[Incorrect] A rectangular red
cardboard box of Quaker Chewy
Chocolate Chip granola bars, 5
bars, 4.4 ounces (125 grams). The
box is 6 inches long and 5 inches
wide. The front of the box shows
the “chewy” logo in white letters.
Below the logo, a white box with
red text reads “SELECT CHOICE.”
[...]

Missing:
- brand: Select Choice

[Incorrect] The product is a red
and white box of granola bars.
The box is rectangular, with a red
base and a white top. The brand
name “Chewy” is written in
brown letters on the front of the
box. The variety is “Chocolate
Chip,” which is written in white
letters above the brand name. [...]

Missing:
- brand: Select Choice

[Incorrect] A cardboard box
containing Quaker Chewy
Chocolate Chip granola bars.
It has a red-and-white design and
is oriented upside down. The box
contains 12 bars.

Missing:
- brand: Select Choice

in the upper left, and only Llama noticed the text. The rounded
Manwich sloppy joe can partially shows the “M” from the logo and
an image of prepared sloppy joe, but all models focused on the more
visible tomatoes instead, inferring it was just tomato sauce.

Finally, our regression analysis shows model-wise differences
in product identification performance. Compared to GPT, the best-
performing model, all VLMs had significantly reduced performance
(Gemini: 45.1% reduced odds; Llama: 82.9%; Molmo: 83.9%). We
found a significant interaction effect for blur by Gemini (𝑝 < 0.05).
The interaction plots showed that Gemini’s performance relative to
GPT declines more slowly for blurred images, suggesting greater
resistance to it. We also found a significant negative interaction be-
tween rotation and Molmo (𝑝 < 0.01). The interaction plot showed
that the drop in performance is steeper when images are rotated,
suggesting that Molmo is worse at handling rotations than GPT is.

4.3.3 Differences in What Each VLM Struggles With. We now ana-
lyze each VLM separately to understand its susceptibility to image
quality issues; see Table 7. Our VLM-level regression shows that
GPT and Llama are less affected by rotated images than by mis-
framed or blurred images (GPT: 86.8% versus 91.8% and 93.8% lower
odds; Llama: 59.3% versus 80.3% and 84.3% lower odds). This sug-
gests that efforts to improve GPT and Llama’s performance should
prioritize blurred images, which are also the most prevalent in our
dataset. On the other hand, Molmo is more susceptible to rotated
images (91.5% lower odds) than to blurred (82.4%) or misframed
(84.3%) images, suggesting that additional training on rotated im-
ages is likely to yield the greatest benefit. Gemini was the only

model that had relatively worse performance for misframing (84.8%
lower odds) than for blur (83.1%) or rotation (68.0%).

All models showed a significant interaction between blur and
framing, with positive coefficients (all 𝑝 < 0.001). GPT also had
a significant, positive interaction effect for framing by rotation
(𝑝 < 0.01), while Molmo had significant, positive interaction effects
for blur by rotation (𝑝 < 0.05) and framing by rotation (𝑝 < 0.001).
Inspecting the interaction plots for these revealed that when both in-
dependent variables are true (e.g., blur and misframing), the drop in
performance is less steep than when only one is true, similar to the
interactions between image quality issues in our prior regression.

5 Discussion
Despite their impressive capabilities for object recognition, our
analysis reveals that VLMs struggle to provide detailed, accurate
product captions that BLV people need when images have common
quality issues (e.g., blur, framing, rotation). To our knowledge, this
study is the first to systematically examine how image quality
affects VLMs’ ability to recognize products.While numerous studies
have examined how VLMs can support BLV people’s visual access
needs, they largely sidestep image quality issues by asking for
better photos (e.g., Seeing AI, Be My AI, [92]) or leaving users to
triangulate facts across multiple models [27]. While such adaptive
practices are creative and skillful, the normalization of errors signals
a dire need to improve how VLMs (and large AI models, broadly) are
adapted to applications for BLV people. Based on our findings, we
first discuss how our approach moves towards disability-centered
VLM evaluation and development, arguing that while VLMs are
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Table 7: Logistic regression results on a per-VLM basis that let us understand how image quality issues and product image
properties affect the likelihood of correct identification. Themodel coefficients represent logits (i.e., log-odds). p-value significant
at: * 0.05; ** 0.01; *** 0.001.

Independent Variable GPT Gemini Llama Molmo

(Intercept) 4.1068*** 3.0659*** 1.7902*** 1.8236***
Blur = True -2.7830*** -1.7801*** -1.8539*** -1.7344***
Framing = True -2.4973*** -1.8848*** -1.6231*** -1.8539***
Rotation = True -2.0067*** -1.1406** -0.8992** -2.4627***

Blur and Framing = True 2.0405*** 1.2420*** 1.0932*** 1.0883***
Blur and Rotation = True 0.9562 0.4929 0.3790 0.8919*
Framing and Rotation = True 1.6500** 0.8037 0.6144 1.6175***

Blur, Framing, and Rotation = True -0.9292 -0.1690 -0.5340 -1.0584

Null deviance (df = 1858) 1626.6 1801.4 2493.4 2550.3
Residual deviance (df = 1851) 1342.9 1581.3 2083.4 1978.0
AIC 1358.9 1597.3 2099.4 1994.0

designed for “everyone”, particular attention needs to be paid to
BLV people’s specific use cases and how tools fail for them. Second,
we argue that improving VLMs requires changes across the model
and end-user tool development pipeline, and we propose research
directions to improve VLM reliability through data curation, post-
training procedures, and inference techniques to reduce errors.

5.1 Towards Disability-Centered Model
Evaluation of AI Systems

Developing methods to evaluate model performance is an active
area of research across HCI, AI, and ML communities. As such,
accessibility researchers within these areas have begun to develop
various approaches to disability-centered model evaluation that
involve prompting [47, 103], metric assessment [67], interviews
[9, 120], and more. A disability-centered approach not only de-
pends on the creation of disability-first datasets (e.g., [111, 124])
but also on evaluation that centers on disability throughout. This
includes questions of which data are focal to the study, how data
are annotated to establish “ground truth”, which tasks and models
are selected for evaluation, and which criteria or metrics are used
to assess model performance. Below, we describe these issues and
the challenges of disability-centered model evaluation.

We began by understanding the information needs of BLV peo-
ple within a common yet often challenging everyday task: using
VLM-based AI tools to identify household products and goods. Our
approach of using a survey complemented related interview stud-
ies [3, 9, 120, 132] and allowed a relatively large sample of BLV
people to share their experiences and issues with a diversity of
AI tools for captioning images of products, surfacing unmet needs
around details in images, and the difficulty of understanding and
resolving common image quality issues. Our research team is all
sighted, making it even more critical to understand and prioritize
BLV people’s perspectives from the start.

While related disability-centered approaches aim to support peo-
ple with disabilities in generating “good” data for training systems
[51, 60], our study examined the opposite side of this issue. We in-
tentionally curated a disability dataset such that it targets important

but understudied cases (i.e., product images with quality issues),
thus aiming to interrogate cases that are central to BLV people’s
lived experiences but often set aside in research (i.e., labeled as
others [19], excluded in analysis [56], or treated as a direction for
future work [24]). Rather than placing the burden on BLV users to
consistently capture “high-quality” photos required for successful
object recognition or training, future datasets should treat image
quality variability as a central design consideration, in contrast to
existing datasets that overwhelmingly focus on high-quality images
(e.g., ImageNet [37] and MS COCO [28, 82]) that VLMs are opti-
mized on. Including representative quality variations that reflect
the real-world conditions under which BLV people capture images
can help us develop VLMs that are more resistant to such variations
from the start, rather than needing to fix them in post-training.

Although academic scholars and industry corporations have em-
phasized the pressing need for more disability-centered datasets
[20, 38, 55, 79, 97, 111, 124], annotating these datasets with mean-
ingful “ground truth” labels so that they can be used in benchmark
studies and model evaluations such as the present paper remains a
challenge, particularly when the phenomena of interest are inacces-
sible to the people whomatter most [51, 60]. Relying on crowdwork-
ers is a common approach to annotation, but they may lack insight
into disabled people’s information needs and may apply varying
standards of visual interpretation in BLV-focused datasets [113].
They are also often constrained by the time allotted to each annota-
tion and tend to move on quickly when encountering difficult cases.
Using other VLMs to synthetically generate annotations is a popular
approach [84, 119], but it is likely to perpetuate inaccuracies or bi-
ases that the model already has (see distribution shift [110]), rather
than capturing important nuances. In other words, the most chal-
lenging use cases for machines require extensive human labor. In
our case, four researchers spent more than three months reviewing,
discussing, validating, and annotating low-quality images. While
we developed a structured annotation framework based on BLV
users’ information needs, we were still limited by the information
available in images, and could not reliably code expiration dates
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or product ingredient lists (other details that BLV people wanted
captured and should be examined in future work).

Another challenge is selecting models to evaluate that align
with disabled people’s experiences and needs, and are amenable to
further research. Our study selects a complementary set of VLMs:
two closed-source models that power the AI image captioning
tools BLV people use daily (e.g., Seeing AI, Be My AI), enabling
industry relevance and application of our findings; and two open-
source models because data privacy was an important concern for
BLV people, and these models can be run locally, allowing greater
control over privacy-sensitive data, as we discuss below. Open-
source models also enable the understanding of training procedures,
which can aid in interpreting evaluation results.

Finally, disability-centered approaches must contend with which
measures of “success” best represent disabled people’s concerns.
For example, Kapur and Kreiss [67] demonstrates bias in reference-
based metrics against BLV people, calling for evaluation methods
based on user groups’ specific needs. Towards this end, the research
team manually reviewed and coded 7,436 model captions for accu-
racy and completeness, rather than relying on metrics that assess
similarity and could lead to false positives (see Section 4.1). That
is, we aimed to emphasize BLV people’s information needs by re-
quiring models to generate both necessary and accurate product
details rather than settling for general category identification (e.g.,
“can of food”) or brand recognition (e.g., “Campbell’s”). Given the
difficulty BLV people reported in assessing errors, let alone the risk
of mis-identification, more nuanced and consistent frameworks for
data annotation and error analysis are crucial for reliable VLMs,
especially for high-stakes uses, such as identifying food products,
medications, and household cleaners. Our annotation structure pro-
vides a pathway for annotating products, with similar structures
being an important direction for future work on disability datasets.

5.2 Recommendations for Improving VLM
Performance on Low-Quality Images

While the studied closed-source models (i.e., GPT-4.1, Gemini) per-
form better on low-quality images, open-source models (i.e., Llama,
Molmo) are likely more fruitful for developing reliable VLMs that
meet BLV people’s needs. Closed-source models are limited to
prompt engineering—which is insufficient for handling distorted
images—and fine-tuning to improve performance. While black-box
APIs for closed-source VLMs allow limited fine-tuning on provided
data, they offer far less flexibility, as details about the model archi-
tecture, training data, and the tuning process (e.g., which weights
are frozen and the loss function used) are not disclosed. Moreover,
closed-source models may leak private data [41, 86], compromis-
ing data privacy that our survey respondents strongly desired. In
contrast, open-source models make the model’s architecture and
training details available to researchers9, while preserving privacy
when run locally. To narrow the performance gap between open-
and closed-source models, we propose three areas of research across
the VLM pipeline: data curation, training objectives, and inference-
time techniques.

9Molmo goes further and makes training data available [35], while Llama only provides
high-level descriptions of their dataset [53].

5.2.1 Improved Post-Training of VLMs ThroughData Curation. VLM
performance is heavily shaped by post-training activities, including
fine-tuning on specific tasks (e.g., PixMoCap for captioning [35])
and diverse datasets [80], or training to provide answers in specific
formats (e.g., instruction tuning [84]). One way to improve models
at this stage is to give examples when the model lacks knowledge
about a task [148]. For recognizing products and their attributes,
recent research suggests that VLMs require fine-tuning for good
performance [104, 125]. However, our analysis shows that off-the-
shelf VLMs perform well for U.S.-based products when product
images are high-quality, suggesting that the issue is not due to
the model’s knowledge gaps. That said, such training could help
adapt models for different user populations, such as BLV people in
non-English-speaking countries, which we did not study. Products
in those countries are infrequently found in the U.S. or on English-
written webpages, which we hypothesize are the primary sources
of training data for the VLMs studied.

Better datasets could be used to train VLMs to learn more robust
representations of how products look when images are degraded.
While performing well on high-quality images, all models had sub-
stantially lower performance on low-quality images, suggesting
they could not find enough distinguishing characteristics in those
images to support successful identification (as humans could). To
remedy this, future research could develop synthetic datasets in
which high-quality images are systematically degraded with differ-
ent image-quality issues (similar to [57]), such as a can of soda with
progressively greater blur or different framing issues, and fine-tune
a VLM on them. Such work can draw inspiration from research
in quality-agnostic learning (e.g., [68, 142]) that has demonstrated
modest improvements in handling image distortions, yet still leaves
significant room for improvement in modern VLMs. For instance,
Molmo already applies an overlapping cropping procedure in its
training [35], which we would expect to make it more resistant
to misframed images, but our findings demonstrate that further
development is needed to address its sensitivity to image framing.
To that end, our findings can help focus these efforts when coupled
with knowledge about model training. For example, in addition
to misframed images, Molmo struggled most with rotated images,
suggesting that providing pairs of correctly aligned, rotated images
with high-quality annotations could help themodel recognize object
similarities despite different orientations. Likewise, Llama struggled
the most with blurred images, suggesting that providing it with
pairs of blurred and non-blurred images may help. Moreover, open-
source training procedures allow us to focus on fine-tuning specific
parts of the model for this task, such as the vision encoder, while
freezing parts that work well, like the language encoder. Synthetic
datasets, however, should still be tied to and evaluated alongside
user-generated datasets to help preserve the nuanced qualities of
authentic data. Our existing dataset serves as a good starting point
for such initiatives, as it includes high-quality images that can be
altered and low-quality images for naturalistic comparison.

5.2.2 Better Learning Objectives for Post-Training. Alongside the
data used for training, effective post-training may require reconsid-
ering commonly used loss functions if they do not capture correct-
ness well for the domain-specific task, such as product identification.
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Our study revealed that VLMs frequently produce believable prod-
uct descriptions that are subtly incorrect, affecting their meaning
(e.g., “Coke Zero” versus “Diet Coke”). While VLM loss functions
differ, many use cross-entropy loss between the distribution of the
model’s logits and the true labels of tokens from the training data.
To more directly assess whether different attributes of product
annotations are preserved during fine-tuning, future work may
develop evaluation metrics based on semantic relationships within
the annotations. Inspiration could be taken from evaluation metrics
like SPICE [11] that evaluates overlaps between scene graphs (e.g.,
can → on → countertop) or Cap F1 [35], which evaluates overlap
between atomic concepts (e.g., “A can of soda”; “Soda is on the
kitchen countertop”). Such loss functions could better steer models
towards learning what constitutes good product annotations.

5.2.3 Addressing Captioning Errors During Inference. While im-
proved model training can help, it is unlikely to fully resolve the
issues our study reveals; instead, we hypothesize that additional
inference-time techniques can enhance VLM output without bur-
dening the BLV user to take additional photos. One way is to lever-
age image reconstruction techniques that repair images before
captioning. For instance, with misframed images, researchers can
explore inpainting techniques that produce multiple possible ver-
sions of a repaired image for captioning [4, 31], eliminating the need
to take additional photos. Another is to ensure key product details
are included or excluded, for which we can look to related work on
reducing toxicity or enforcing lexical constraints in LLM outputs,
in which constraint-based optimization can have advantages over
conventional fine-tuning [87, 106]. Furthermore, these techniques
can often be applied to large VLMs without costly model training,
or can be combined with training smaller VLMs (which require less
hardware) to improve their output beyond that of larger models.

Even after applying reconstruction techniques, a VLM may still
make errors; in such cases, it should abstain from providing a cap-
tion. Simple techniques involving prompt engineering to abstain
are of limited efficacy, with no guarantees that the instruction to
abstain will be followed (e.g., best abstention prompting yields only
0.78 accuracy on question-answer tasks with similarly low-quality
images [63]). In contrast, recent work on LLM abstention explores
techniques based on self-consistency, in which the model evaluates
its own outputs and level of uncertainty before returning a response,
demonstrating good performance in question-answering settings
[32, 70, 91, 133]. However, abstention for open-ended image cap-
tions is harder. In our study, we observed numerous cases in which
image captions contained correct parts of our product annotations,
even when the caption as a whole was incorrect. While recent work
for VLMs has explored techniques to repair captioning errors prior
to returning them during the generation process (e.g., controlling
what objects are mentioned [144]; strategically adjusting model
weights [78, 108, 136, 141] or fine-tuning [22, 146]; sampling multi-
ple patches [29]; guided decoding [150]; backtracking when uncer-
tain [40, 131]) or post-hoc verification [139, 155], these techniques
can induce further errors during correction, rather than providing
a higher-precision output that only includes details that are likely
correct. Instead, systems for partial abstention, which abstain only
on inconsistent caption parts, should be explored. These could help
the user understand what the model knows and is confident about,

allowing them to decide whether to retake a photo to gather more
information about the image or to confirm the information with
someone else. Together, these techniques help make VLMs more
reliable by providing high-quality responses when possible and
only sharing what it is confident in when not.

5.3 Recommendations for Supporting Better
User Understanding of Image Quality Issues

While we emphasize multiple ways to improve VLM performance
on low-quality images, BLV people may still need to re-take pho-
tos, which participants in our study wanted better guidance on.
Thus, we must continue to design applications that provide richer
feedback on the photo-taking experience, helping users understand
their environment and potential image quality issues, and guiding
them in resolving them. For example, as our participants suggested,
a multi-faceted approach could provide feedback before taking the
photo, pointing out lighting conditions and environmental details
that may affect the process; during photo taking, offering continu-
ous feedback to the user about the camera angle and object position-
ing to capture relevant parts of products (e.g., product logo, back of
the box, nutrition label) [6, 64, 74, 127]; and after taking the photo,
informing users about image quality issues to help them learn what
might affect captioning and how to make adjustments. However,
survey participants also raised concerns that people with multiple
disabilities may find such interventions more difficult. For example,
participants mentioned difficulty holding the camera steady enough
and carefully controlling their breathing to prevent blur. Others
mentioned their dexterity makes it difficult to orient the camera
in particular ways. While improving the photo-taking experience
is important, the complexities of photo-taking for disabled users
underscore the need for technical improvements first and foremost,
rather than placing the labor of taking good photos on the users.

5.4 Limitations and Future Work
Our study has a few limitations that future work should address.
First, we focus on evaluating product identification accuracy rather
than the caption quality of VLMs generally. We focus on products
because BLV respondents in our survey strongly wanted to know
which products they had photographed. However, VLMs provide
numerous details in image captions, including key product infor-
mation (e.g., a can of Coca-Cola), plus visual details of the product
and nearby objects (e.g., the can is red; the can is on the counter),
which BLV people want in captions (shown by our survey and
prior work [67, 97]). Moreover, how information is presented can
change its interpretation. For instance, humans often use hedging
language to indicate uncertainty about information (e.g., “likely
is” Diet Coca-Cola); as VLMs can also use such language, under-
standing how it affects BLV people’s interpretation of uncertain
information with respect to helpfulness and safety—such as if key
dietary information is missing, leading to less trust in the output—
may inform how a VLM should present captions. Existing work
shows that expressions of uncertainty can meaningfully influence
users’ reliance on model outputs [140]. However, current VLMs
struggle to communicate their internal uncertainty through natural
language [69, 117]. This misalignment becomes particularly prob-
lematic for BLV people when models use overly confident language
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despite uncertainty, or, conversely, when they hedge even when
the information is accurate. Future studies should examine caption
quality in this more holistic manner.

A second limitation is reducing image quality issues to a binary
variable. Our dataset included a count of crowdworkers who identi-
fied an image quality issue, but treating the count as continuous or
ordinal over-interprets it (i.e., 5 is not necessarily more blurry than
2), which is why we converted it to a binary variable. In reality,
image degradation occurs on a spectrum, likely affecting VLMs
differently as it worsens. For instance, low blur may cause no issues
with captioning, while higher blur is problematic. Future work can
draw from computer vision research to quantify image degradations
(e.g., blur kernel estimation [45, 118, 149]; occlusion-robust object
detection and segmentation [105, 145]; rotation-robust object and
text detection [88, 109, 138]) and, for instance, use these values in
regression analysis similar to ours.

Finally, our experiment focused on VLMs and data with a U.S.
and English-speaking bias. These VLMs would likely performworse
on product photos from a non-English-speaking country. Previous
research has identified cross-cultural bias as a significant limitation
of VLMs perceived by BLV users [9]. Future work should consider
how well the VLMs we studied perform in cross-cultural contexts
and may also explore other open-source models that explicitly train
on other languages (e.g., Qwen [134] or Deepseek [34] for Chinese).

6 Conclusion
As blind and low-vision (BLV) people increasingly rely on Vision-
Language Model (VLM)-based tools to generate image captions for
product identification, we need a more nuanced understanding of
how these systems handle the image-quality issues common in BLV
people’s photographs. Our survey of 86 BLV people reveals their per-
spectives on understanding image-quality issues and errors when
using VLM-based tools for product captioning, and the difficulties
BLV people face in recovering from those errors. We then con-
structed an annotated dataset of 1,859 images taken by BLV people
(729 high-quality, 1,130 low-quality images that are blurred, mis-
framed, or rotated) with detailed product annotations—including
product type (e.g., soup), brand (e.g., Campbell’s), and variety (e.g.,
tomato, low-sodium)—and evaluated four different VLMs on it. We
found that all VLMs experience a decline in product identification
accuracy when image quality issues are present, with performance
worsening when multiple issues are present. Moreover, we showed
that each VLM is more or less susceptible to the studied image qual-
ity issues, suggesting ways to prioritize improving its performance.
Making VLM-based captioning tools reliable will require collabora-
tion among HCI and ML researchers and tool designers. Together,
we will need to revisit the datasets used to evaluate these models;
improve model performance through fine-tuning or inference-time
techniques, especially for privacy-preserving open-source models;
and design systems to provide richer feedback on VLM errors.
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A Crowdworker Ratings for Captionability of
Images and Image Quality Issues in Dataset

Table 8 details how many crowdworkers found images captionable
(from Gurari et al. [55]) and the presence of image quality issues
(from Chiu et al. [30]) for our subset of 1.859 images.

B Additional Examples of Product Captioning
Performance on Low-Quality Images

Tables 9, 10, 11, 12, and 13 provide additional examples of how the
studied VLMs fail for various image quality issues.

C Image Captioning Prompt for All VLMs
You are a helpful assistant who identifies products in images for
blind and low-vision individuals. Identify the product in the image
while following these guidelines:

(1) Identify crucial features about the product, including:
(a) Object type (can, bag, plastic container, etc.)
(b) Product type (prepared or frozen meal, seasoning mix,

soda, coffee)
(c) Brand (Heinz, Coca-Cola, Starbucks, etc.)
(d) Variety (specific flavors, sizes, count of items, etc.)
(e) Visual features (color, shape, size, etc.)

(2) Use clear, direct, and objective language. Do not use vague
adjectives like ‘large’ or ‘small’, or vague adverbs like ‘promi-
nently’ or ‘clearly’.

(3) DO NOT mention camera artifacts (e.g., blur) or if an object
is partially visible.

(4) DO NOT use introductory phrases (e.g., ‘The image shows’,
‘The object is’, ‘The primary object is’).
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Table 8: The final dataset for Study 2 included 1,859 images taken by BLV people, with 729 images being high-quality images
and 1,130 being low-quality images. Each image has at least three captions from crowdworkers (i.e., no more than 3 people
said the image was Unrecognizable). High-quality images have no image quality issues > 1; low-quality images have at least
one issue for which ≥ 4 crowdworkers reported it. The 17 high-quality images with rotation ≥ 4 were images that only had a
rotation issue (noted by the crowdworkers) but were actually not rotated, as checked by two researchers (see Section 4.2.2);
since they had no other issues, we moved these into the high-quality subset. Each row indicates the number of crowdworkers
who reported that an image was unrecognizable or had the specified image-quality issue. Percentages are column-wise.

Image Type Num.
Crowdworkers Unrecog. Blur Framing Rotation Obstruction Too Dark Too Bright Other No Issue

High-Quality
(729 Images)

0 706(96.8%) 620(85.1%) 529(72.6%) 687(94.2%) 718 (98.5%) 729(100.0%) 726 (99.6%) 721(98.9%) 17 (2.3%)
1 18 (2.5%) 109(15.0%) 200(27.4%) 25 (3.4%) 11 (1.5%) 0 3 (0.4%) 8 (1.1%) 0
2 5 (0.7%) 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0
4 0 0 0 14 (1.9%) 0 0 0 0 346 (47.5%)
5 0 0 0 3 (0.4%) 0 0 0 0 366 (50.2%)

Low-Quality
(1,130 Images)

0 936(82.8%) 311(27.5%) 168(14.9%) 585(51.8%) 1018 (90.1%) 973 (86.1%) 960 (85.0%) 1081(95.7%) 1130(100.0%)
1 194(17.2%) 173(15.3%) 137(12.2%) 112 (9.9%) 88 (7.8%) 133 (11.8%) 131 (11.6%) 48 (4.3%) 0
2 0 106 (9.4%) 132(11.7%) 90 (8.0%) 6 (0.5%) 18 (1.6%) 23 (2.0%) 1 (0.1%) 0
3 0 76 (6.7%) 136(12.0%) 75 (6.6%) 4 (0.4%) 2 (0.2%) 8 (0.7%) 0 0
4 0 278(24.6%) 395(35.0%) 209(18.5%) 10 (0.9%) 3 (0.3%) 5 (0.4%) 0 0
5 0 186(16.5%) 162(14.3%) 59 (5.2%) 4 (0.4%) 1 (0.1%) 3 (0.3%) 0 0

Table 9: Examples of blurred product images where VLMs may only provide high-level information or incorrectly infer what
the product is. Captions were shortened for presentation purposes only, indicated by [...].

Image Annotation GPT Gemini Llama Molmo

Product:
instant
oatmeal

Brand:
Quaker

Variety:
raisin;
date;
walnut

[Correct] Box of Quaker brand
instant oatmeal in the Raisin,
Date & Walnut variety, with a
yellow and blue color scheme and
the Quaker logo featuring a man
in a hat.

[Correct] A yellow box of
Quaker Instant Oatmeal in the
Raisin, Date, and Walnut
flavor. The Quaker logo, a man
in a hat, is shown above the word
“Quaker” on a blue stripe. Below
this, a red rectangle states
“Raisin, Date & Walnut” in
white text.

[Incorrect] The product is a box
of Quaker Old Fashioned Oats,
featuring a blue and yellow color
scheme with a red rectangle on
the front. The box has a
rectangular shape and a medium
size.

Missing:
- product: instant oatmeal
- variety: raisin; date; walnut

[Incorrect] A rectangular box of
Quaker oats, specifically oatmeal
packets. The brand name
“QUAKER” is visible on the
packaging, with additional text
indicating the flavor “raisin,
date, and walnut”.

Missing:
- product: instant oatmeal

Product:
yogurt

Brand:
Yoplait

[Incorrect] Aluminum can with
a pink top, featuring a white
awareness ribbon design,
commonly associated with breast
cancer awareness campaigns.
Specific brand and variety are not
identifiable from visible features.

Missing:
- product: yogurt
- brand: Yoplait

[Incorrect] A pink, spherical
chocolate candy in a shiny
metallic wrapper. A white ribbon
design is on the front, along with
the word “GODIVA” in white
lettering.

Missing:
- product: yogurt
- brand: Yoplait

[Incorrect] A cylindrical, red
can with a white logo and text.
The logo is a stylized letter “D”
with the brand name “Dr Pepper”
written in white text next to it.
[...]

Missing:
- product: yogurt
- brand: Yoplait

[Incorrect] Coffee bag from
Eight O’Clock Coffee brand. Red
packaging with white branding
visible.

Missing:
- product: yogurt
- brand: Yoplait
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Table 10: Examples of images illustrating how framing affects product identification and resulting captions. In the Corn Pops
and McCormick Great Guacamole examples, all VLMs fail to fill in the missing information needed for correct identification.
The Honey Nut Cheerios example provides two alternate framings, with varying amounts of the text visible. Despite the cereal’s
mascot being visible on both, Llama and Molmo fail to correctly identify the product when more of the product text is hidden.
Captions were shortened for presentation purposes only, indicated by [...].

Image Annotation GPT Gemini Llama Molmo

Product:
cereal

Brand:
Kellogg’s

Variety:
Corn Pops

[Incorrect] Cardboard box of
breakfast cereal, likely corn
flakes, with yellow flakes
pictured in a bowl of milk and
bold red and blue outlined letters
on a yellow background.

Missing:
- brand: Kellogg’s
- variety: Corn Pops

[Incorrect] A rectangular box of
Cap’n Crunch’s Crunch Berries
cereal. The box is yellow and red
with an image of crunchy cereal
pieces.

Missing:
- brand: Kellogg’s
- variety: Corn Pops

[Incorrect] The product is a box
of Kraft macaroni and cheese.
The box is yellow and features
the brand name in red letters,
with a black and white logo in the
top-left corner. The background
of the box is yellow, and it has a
white border around the edges.

Missing:
- product: cereal
- brand: Kellogg’s
- variety: Corn Pops

[Incorrect] Coffee-Mate French
Vanilla coffee creamer bottle,
white with yellow label, on
yellow background. 32 fl oz (946
ml) size. Red lettering on left side.
Partial yellow and black text on
right, “CASH” visible.

Missing:
- product: cereal
- brand: Kellogg’s
- variety: Corn Pops

Product:
seasoning
mix

Brand:
McCormick
Produce
Partners

Variety:
Great
Guacamole

[Incorrect] Packet of
McCormick Produce Partners
Great Sample seasoning mix,
featuring a yellow label with
black and red text, outlined in
green and black.

Missing:
- variety: Great Guacamole

[Incorrect] A rectangular pouch
of McCormick Produce
Partners Great American Potato
seasoning mix. The top is black,
and a red banner with the white
McCormick logo is below it. The
main part of the pouch is yellow
with green borders.

Missing:
- variety: Great Guacamole

[Incorrect] The product is a bag
of McCormick’s “Great Sample”
Produce Partners seasoning
mix, featuring the brand name
“McCormick” and the product
name “Produce Partners” in
black text on a yellow
background. [...]

Missing:
- variety: Great Guacamole

[Incorrect] McCormick
Produce Partners Great
(partially visible) package. Black
top, yellow background with
green outline. Red and black text,
McCormick logo with blue M and
red C. Red banner with white text
“Produce Partners”.

Missing:
- product: seasoning mix
- variety: Great Guacamole

Product:
cereal

Brand:
Cheerios

Variety:
Honey Nut

[Correct] Cereal box, Honey
Nut Cheerios, General Mills
brand, honey nut flavor, features
a cartoon bee mascot and a bowl
of cereal with honey being
drizzled, predominantly orange
and yellow color scheme.

[Correct] A box of General Mills
Honey Nut Cheerios cereal.
The box is orange, with a cartoon
bee character holding a honey
dipper over a red bowl of cereal
with milk.

[Correct] The product is a red
and orange cereal box featuring
the Honey Nut Cheerios brand
and variety. The box is adorned
with a yellow bee character and
contains a bowl of cereal with a
honey dipper on top.

[Correct] Cereal box: Type: Box
Product: Cereal Brand: Kellogg’s
Variety: Honey Nut Cheerios
Shape: Rectangular Color scheme:
Orange and yellow Prominent
graphic: Honeybee character
Main graphic: Bowl of Cheerios
cereal with milk, honey drizzled
on top

Product:
cereal

Brand:
Cheerios

Variety:
Honey Nut

[Correct] Cardboard box of
Honey Nut Cheerios cereal by
General Mills, featuring the
honey bee mascot holding a
honey dipper, with round oat
cereal pieces and text
highlighting it as “America’s
Favorite Cereal.” The box has an
orange and blue color scheme.
Net weight is 1 lb 5 oz (595 g).

[Correct] Cereal box of Honey
Nut Cheerios. The box is red
with blue and yellow accents. It
features a cartoon bee holding a
honey dipper, and a bowl of
cereal. The text “America’s
Favorite Cereal!” is written on
the bottom. The net weight is 1
pound, 1 ounce (481 grams).

[Incorrect] Product Description
- Object Type: Plastic container
- Product Type: Prepared meal
- Brand: Heinz
- Variety: Baked beans[...]

Missing:
- product: cereal
- brand: Cheerios
- variety: Honey Nut

[Incorrect] Cereal box:
Kellogg’s Froot Loops. Red
background. Yellow text on blue
banner: “America’s Favorite
Cereal”. Animated bee character
holding a Froot Loop. Visible net
weight: 11oz. Standing on
wooden floor.

Missing:
- brand: Cheerios
- variety: Honey Nut
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Table 11: Examples of images with rotation issues where different VLMs may only provide high-level information or incorrectly
infer what the product is. Captions were shortened for presentation purposes only, indicated by [...].

Image Annotation GPT Gemini Llama Molmo

Product:
Deli Napoli
Meatballs

Brand:
Lite n’ Easy

[Incorrect] Round plastic
container of DEKA brand Angel
Cookies. The lid is white with a
red and white label that features
the brand logo and product name.

Missing:
- product: Deli Napoli
Meatballs
- brand: Lite n’ Easy

[Incorrect] A round, plastic,
white container of Deli Napoli
Meatballs, 100g. The lid is white
with a red stripe across the top
and the words “Deli Easy” in
white font. Below that, the words
“Napoli Meatballs” are written in
black cursive font. The bottom of
the lid has a red recycling symbol
and the words “Store below 4°C.”

Missing:
- brand: Lite n’ Easy

[Incorrect] This is a plastic
container of meatballs from the
brand IDEAL, with a white label
and red accents. The label
features black text, including the
product name “Meatballs” and a
handwritten note. The container
has a round shape and is placed
on a beige surface, accompanied
by a black object in the bottom
right corner.

Missing:
- product: Deli Napoli
Meatballs
- brand: Lite n’ Easy

[Incorrect] Kraft Philadelphia
cream cheese container, 8 oz.

Missing:
- product: Deli Napoli
Meatballs
- brand: Lite n’ Easy

Product:
juice

Brand:
Dawn

Variety:
Smooth ’n
Juicy

[Incorrect] Carton of Dalin
Smooth n’ Juicy orange juice,
featuring an image of orange
slices and juice splash on a blue
and orange background.

Missing:
- brand: Dawn

[Incorrect] A blue and orange
juice box is oriented
vertically.[...] The juice box is
Dairymen brand orange juice.
The top of the juice box is blue
and has a logo in white that says
Dairymen. [...] Beneath the logo,
the words “Smooth ’n Juicy” are
written in yellow and orange. [...]

Missing:
- brand: Dawn

[Incorrect] The product is a
rectangular-shaped carton of
orange juice with the top-left
corner of the carton facing the
viewer. [...] The brand name
“Dair” is written in white text on
the top-right corner of the carton,
while the product name “Smooth
’n Juicy” is displayed in yellow
and white 3D-style text on the
center-left side. [...]

Missing:
- brand: Dawn

[Incorrect] A blue rectangular
container of orange juice
smoothie. The container displays
an image of oranges and has
“Smooth” in white text and “Juice”
in yellow text with a drop
shadow. The brand “Dewon” is
written in cursive script, with the
“W” featuring a leaf design. The
container is placed at an angle on
a light brown-orange countertop.

Missing:
- brand: Dawn
- variety: Smooth ’n Juicy

Table 12: Examples of images with multiple issues (blur, framing, and rotation) with variations in product captions. Two slightly
different frames of the same product, a package of Mucinex Expectorant Maximum Strength medication, are shown along with
generated captions. Captions were shortened for presentation purposes only, indicated by [...].

Image Annotation GPT Gemini Llama Molmo

Product:
expecto-
rant

Brand:
Mucinex

Variety:
maximum
strength

[Incorrect] Box of Mucinex
expectorant tablets, blue and
white packaging, designed to
relieve chest congestion, thin and
loosen mucus, and intended for
adults and children over 12 years.

Missing:
- variety: maximum strength

[Incorrect] A rectangular box of
Mucinex expectorant,
extended-release bi-layer tablets.
The box is white with the
“Mucinex” brand name printed in
blue letters. It contains 40 tablets
and lists “Relieves chest
congestion” and “Thins and
loosens mucus” in blue text on a
blue background on the side of
the box.

Missing:
- variety: maximum strength

[Incorrect] The product is a
white box with a red stripe and
blue accents, featuring the brand
name “Aucinex” in dark blue text.
[...] along with additional text in
smaller white letters on a blue
background. The background of
the image is a light-colored wood
surface, likely a table or
countertop.

Missing:
- product: expectorant
- brand: mucinex
- variety: maximum strength

[Incorrect] Aucinex
expectorant box. It’s a
medication product, likely used
for respiratory conditions. The
box has a white background with
a blue strip and red curvy line.
The brand name “Aucinex” is
visible in blue text.

Missing:
- brand: mucinex
- variety: maximum strength

Product:
expecto-
rant

Brand:
Mucinex

Variety:
maximum
strength

[Correct] Box of Mucinex
Maximum Strength
Expectorant, 1200 mg
guaifenesin extended-release
bi-layer tablets, labeled for
12-hour relief, with 14 tablets
indicated on the blue section,
primarily white packaging with
blue and red accents.

[Correct] A white and blue box
of Maximum Strength
Mucinex Expectorant contains
1200 mg guaifenesin
extended-release bi-layer tablets.
[...] A white-outlined circle with
a blue arrow pointing rightward
and the words “12 HOUR” [...] It
reads: “Relieves Chest
Congestion” and “Thins And
Loosens Mucus.” Below this in
white, it states: “10
extended-release bi-layer tablets.”

[Incorrect] The product is a box
of Mucinex Expectorant
tablets. The box is white with
blue and red accents, featuring
the brand name “Mucinex” in
large blue letters on the front. [...]

Missing:
- variety: maximum strength

[Correct] Boxed expectorant
medication. Brand:Mucinex.
Variety: Maximum Strength
12-Hour Extended Release Chest
Congestion. packaging features
red and blue color scheme on a
white background.



Evaluating How ImageQuality Affects Product Captioning with Vision-Language Models CHI ’26, April 13–17, 2026, Barcelona, Spain

Table 13: Examples of images with text panels (rows 1–2) and rounded labels (rows 3–4). VLMs can read text panels, but often
incorrectly or miss key information. Rounded objects often obscure the label, requiring more inference about the product,
which humans do well, but VLMs still struggle with. Captions were shortened for presentation purposes only, indicated by [...].

Image Annotation GPT Gemini Llama Molmo

Product:
almond
milk

Brand:
O Organics

Variety:
vanilla

[Correct] Carton of O Organics
Almond Milk, Vanilla variety.
The package includes the O
Organics brand logo and text
indicating it is an organic
almond milk product with
vanilla flavor. The carton
features a combination of white
and other colors, with descriptive
product information on the side.

[Incorrect] A rectangular white
carton contains organic vanilla
almond milk. The carton has a
light brown banner with the
words “Almond Milk” in white
sans-serif font. Below the banner,
the word “Vanilla” is printed in
white text. At the top of the
carton, an orange and blue logo is
visible, with the word
“ORGANICS” printed underneath.

Missing:
- brand: O Organics

[Incorrect] The image is out of
focus, but it appears to depict a
product label for vanilla
almond milk. [...] It features a
rectangular shape with a
prominent orange banner at the
top, displaying the brand name
“Almond Milk” in large black
letters. Below the banner, the
flavor “Vanilla” is written in
smaller black text. [...]

Missing:
- brand: O Organics

[Incorrect] Almond milk
vanilla carton, possibly by
Horizon Organic. White carton
with black text and color accents.

Missing:
- brand: O Organics

Product:
ground
beef

Variety:
90% lean;
10% fat

[Incorrect] Plastic-wrapped
foam tray of ground beef,
labeled as “Ground Beef 93% Lean
7% Fat” and “Beef Ground Round
USA.” [...]

Missing:
- variety: 90% lean; 10% fat

[Incorrect] Ground beef, 96%
lean/4% fat, in a plastic and
Styrofoam tray with a Nutrition
Facts label and safe handling
instructions.

Missing:
- variety: 90% lean; 10% fat

[Incorrect] The product is a
package of ground beef. The
package is blue and rectangular
with a clear plastic window
showing the red ground beef
inside. [...]

Missing:
- variety: 90% lean; 10% fat

[Incorrect] Ground beef in
blue plastic container with clear
plastic top. Nutrition facts label
on left side shows 93% lean/7%
fat. [...]

Missing:
- variety: 90% lean; 10% fat

Product:
sloppy joe
sauce

Brand:
manwich

[Incorrect]Metal can of what
appears to be a tomato-based
product, featuring an image of a
tomato and other vegetables on
the label. [...] The specific brand
and variety are not fully visible.

Missing:
- product: sloppy joe sauce
- brand: Manwich

[Incorrect] A red metal can of
Campbell’s brand condensed
tomato soup. The label features a
large, realistic image of a red
tomato.

Missing:
- product: sloppy joe sauce
- brand: Manwich

[Incorrect] The product is a can
of tomato sauce. The can is red
with a blue and white label. The
label has a picture of a tomato on
it. The brand name is not visible.
[...]

Missing:
- product: sloppy joe sauce
- brand: Manwich

[Incorrect] Small metal can of
Hunt’s tomato sauce. White label
with red color block. Recipes on
label for dishes using product.
Image of red tomatoes on label.

Missing:
- product: sloppy joe sauce
- brand: Manwich

Product:
peach;
slices

Brand:
Sweet
Harvest

Variety:
heavy
syrup

[Correct] Metal can of Sweet
Harvest brand yellow cling
peach slices in heavy syrup.
The can has an orange and
yellow label with images of
peach slices and green accents.

[Correct] A can of Sweet
Harvest Yellow Cling Peach
Slices in heavy syrup. The can
is primarily yellow and orange,
with a picture of peach slices at
the top. The product name is
displayed in white text against an
orange background.

[Incorrect] Product Description
- Object Type: Can
- Product Type: Prepared meal
- Brand: Great Value
- Variety: Peach Slices in Syrup
- Visual Features: Yellow and
orange can with a green leaf logo
on the front.

Missing:
- brand: Sweet Harvest
- variety: heavy syrup

[Incorrect] A yellow can of Del
Monte Sweet Peas.

Missing:
- product: peach; slices
- brand: Sweet Harvest
- variety: heavy syrup
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